|   | 
Détails
   web
Enregistrements
Auteur Cormier-Salem, M.-C.; Van Trai, N.; Burgos, A.; Durand, J.-D.; Bettarel, Y.; Klein, J.; Duc Huy, H.; Panfili, J.
Titre The mangrove's contribution to people: Interdisciplinary pilot study of the Can Gio Mangrove Biosphere Reserve in Viet Nam Type Article scientifique
Année 2017 Publication Revue Abrégée Comptes Rendus Geoscience
Volume (down) 349 Numéro 6 Pages 341-350
Mots-Clés Mangrove; Biodiversity; Coastal environment; Ecosystem services; Interdisciplinary framework; Local knowledge
Résumé
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1631-0713 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2231
Lien permanent pour cet enregistrement
 

 
Auteur Pellissier, L.; Leprieur, F.; Parravicini, V.; Cowman, P.F.; Kulbicki, M.; Litsios, G.; Olsen, S.M.; Wisz, M.S.; Bellwood, D.R.; Mouillot, D.
Titre Quaternary coral reef refugia preserved fish diversity Type Article scientifique
Année 2014 Publication Revue Abrégée Science
Volume (down) 344 Numéro 6187 Pages 1016-1019
Mots-Clés abundance; areas; assembly rules; cradles; global patterns; gradient; hotspots; marine biodiversity; museums; species richness
Résumé The most prominent pattern in global marine biogeography is the biodiversity peak in the Indo-Australian Archipelago. Yet the processes that underpin this pattern are still actively debated. By reconstructing global marine paleoenvironments over the past 3 million years on the basis of sediment cores, we assessed the extent to which Quaternary climate fluctuations can explain global variation in current reef fish richness. Comparing global historical coral reef habitat availability with the present-day distribution of 6316 reef fish species, we find that distance from stable coral reef habitats during historical periods of habitat loss explains 62% of the variation in fish richness, outweighing present-day environmental factors. Our results highlight the importance of habitat persistence during periods of climate change for preserving marine biodiversity.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0036-8075 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 801
Lien permanent pour cet enregistrement
 

 
Auteur van der Heide, T.; Govers, L.L.; de Fouw, J.; Olff, H.; van der Geest, M.; van Katwijk, M.M.; Piersma, T.; van de Koppel, J.; Silliman, B.R.; Smolders, A.J.P.; van Gils, J.A.
Titre A three-stage symbiosis forms the foundation of seagrass ecosystems Type Article scientifique
Année 2012 Publication Revue Abrégée Science
Volume (down) 336 Numéro Pages 1432-1434
Mots-Clés mutualistic networks zostera-marina biodiversity bivalves sulfide architecture diversity sediments bacteria mollusca
Résumé Seagrasses evolved from terrestrial plants into marine foundation species around 100 million years ago. Their ecological success, however, remains a mystery because natural organic matter accumulation within the beds should result in toxic sediment sulfide levels. Using a meta-analysis, a field study, and a laboratory experiment, we reveal how an ancient three-stage symbiosis between seagrass, lucinid bivalves, and their sulfide-oxidizing gill bacteria reduces sulfide stress for seagrasses. We found that the bivalve-sulfide-oxidizer symbiosis reduced sulfide levels and enhanced seagrass production as measured in biomass. In turn, the bivalves and their endosymbionts profit from organic matter accumulation and radial oxygen release from the seagrass roots. These findings elucidate the long-term success of seagrasses in warm waters and offer new prospects for seagrass ecosystem conservation.
Adresse [van der Heide, Tjisse; Olff, Han] Univ Groningen, CEES, Community & Conservat Ecol Grp, NL-9700 CC Groningen, Netherlands. [Govers, Laura L.; van Katwijk, Marieke M.] Radboud Univ Nijmegen, Dept Environm Sci, Inst Water & Wetland Res, Fac Sci, NL-6525 AJ Nijmegen, Netherlands. [de Fouw, Jimmy; van der Geest, Matthijs; Piersma, Theunis; van Gils, Jan A.] NIOZ Royal Netherlands Inst Sea Res, Dept Marine Ecol, NL-1790 AB Den Burg, Texel, Netherlands. [Piersma, Theunis] Univ Groningen, CEES, Anim Ecol Grp, NL-9700 CC Groningen, Netherlands. [van de Koppel, Johan] NIOZ Royal Netherlands Inst Sea Res, Ctr Estuarine & Marine Ecol, NL-4400 AC Yerseke, Netherlands. [Silliman, Brian R.] Univ Florida, Dept Biol, Gainesville, FL 32611 USA. [Smolders, Alfons J. P.] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Aquat Ecol & Environm Biol, Fac Sci, NL-6525 AJ Nijmegen, Netherlands. van der Heide, T (reprint author), Univ Groningen, CEES, Community & Conservat Ecol Grp, POB 11103, NL-9700 CC Groningen, Netherlands t.van.der.heide@rug.nl
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0036-8075 ISBN Médium
Région Expédition Conférence
Notes ISI Document Delivery No.: 958BT Times Cited: 0 Cited Reference Count: 27 van der Heide, Tjisse Govers, Laura L. de Fouw, Jimmy Olff, Han van der Geest, Matthijs van Katwijk, Marieke M. Piersma, Theunis van de Koppel, Johan Silliman, Brian R. Smolders, Alfons J. P. van Gils, Jan A. “Waddenfonds” program; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)-WOTRO[W.01.65.221.00]; NWO-VIDI[864.09.002]; NSF; Andrew Mellon Foundation; Royal Netherlands Academy We thank G. Quaintenne and H. Blanchet for their help with the collection of Loripes; J. Eygensteyn and E. Pierson for technical assistance; and G. J. Vermeij, H. de Kroon, T. J. Bouma, E. J. Weerman, and C. Smit for their comments on the manuscript. T.v.d.H. was financially supported by the “Waddenfonds” program; M.v.d.G. and T.P. by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)-WOTRO Integrated Programme grant W.01.65.221.00 awarded to T.P.; and J.d.F. and J.v.G. by the NWO-VIDI grant 864.09.002 awarded to J.v.G. B.S. was supported by an NSF CAREER award, the Andrew Mellon Foundation, and the Royal Netherlands Academy Visiting Professorship. The authors declare no conflicts of interest. A detailed description of all materials and methods, sources, as well as supplementary information are available as supplementary materials. The data are deposited in DRYAD at http://dx.doi.org/10.5061/dryad.210mp. Amer assoc advancement science Washington Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ 734 collection 1381
Lien permanent pour cet enregistrement
 

 
Auteur Maury, O.; Poggiale, J.-C.
Titre From individuals to populations to communities: A dynamic energy budget model of marine ecosystem size-spectrum including life history diversity Type Article scientifique
Année 2013 Publication Revue Abrégée Journal of Theoretical Biology
Volume (down) 324 Numéro Pages 52-71
Mots-Clés biodiversity; Dynamic Energy Budget theory; predation; Schooling; Size spectrum
Résumé
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0022-5193 ISBN Médium
Région Expédition Conférence
Notes <p>\textbackslashtextlessp\textbackslashtextgreaterIndividual metabolism, predator–prey relationships, and the role of biodiversity are major factors underlying the dynamics of food webs and their response to environmental variability. Despite their crucial, complementary and interacting influences, they are usually not considered simultaneously in current marine ecosystem models. In an attempt to fill this gap and determine if these factors and their interaction are sufficient to allow realistic community structure and dynamics to emerge, we formulate a mathematical model of the size-structured dynamics of marine communities which integrates mechanistically individual, population and community levels. The model represents the transfer of energy generated in both time and size by an infinite number of interacting fish species spanning from very small to very large species. It is based on standard individual level assumptions of the Dynamic Energy Budget theory (DEB) as well as important ecological processes such as opportunistic size-based predation and competition for food. Resting on the inter-specific body-size scaling relationships of the DEB theory, the diversity of life-history traits (i.e. biodiversity) is explicitly integrated. The stationary solutions of the model as well as the transient solutions arising when environmental signals (e.g. variability of primary production and temperature) propagate through the ecosystem are studied using numerical simulations. It is shown that in the absence of density-dependent feedback processes, the model exhibits unstable oscillations. Density-dependent schooling probability and schooling-dependent predatory and disease mortalities are proposed to be important stabilizing factors allowing stationary solutions to be reached. At the community level, the shape and slope of the obtained quasi-linear stationary spectrum matches well with empirical studies. When oscillations of primary production are simulated, the model predicts that the variability propagates along the spectrum in a given frequency-dependent size range before decreasing for larger sizes. At the species level, the simulations show that small and large species dominate the community successively (small species being more abundant at small sizes and large species being more abundant at large sizes) and that the total biomass of a species decreases with its maximal size which again corroborates empirical studies. Our results indicate that the simultaneous consideration of individual growth and reproduction, size-structured trophic interactions, the diversity of life-history traits and a density-dependent stabilizing process allow realistic community structure and dynamics to emerge without any arbitrary prescription. As a logical consequence of our model construction and a basis for future studies, we define the function Φ as the relative contribution of each species to the total biomass of the ecosystem, for any given size. We argue that this function is a measure of the functional role of biodiversity characterizing the impact of the structure of the community (its species composition) on its function (the relative proportions of losses, dissipation and biological work).\textbackslashtextless/p\textbackslashtextgreater</p> Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 245
Lien permanent pour cet enregistrement
 

 
Auteur Gaboriau, T.; Albouy, C.; Descombes, P.; Mouillot, D.; Pellissier, L.; Leprieur, F.
Titre Ecological constraints coupled with deep-time habitat dynamics predict the latitudinal diversity gradient in reef fishes Type Article scientifique
Année 2019 Publication Revue Abrégée Proc. R. Soc. B-Biol. Sci.
Volume (down) 286 Numéro 1911 Pages 20191506
Mots-Clés biodiversity; climate; diversification; environmental-changes; global patterns; latitudinal diversity gradient; mechanistic model; niche conservatism; palaeohabitat; plate-tectonics; rates; reef fish; relative roles; species richness
Résumé We develop a spatially explicit model of diversification based on palaeohabitat to explore the predictions of four major hypotheses potentially explaining the latitudinal diversity gradient (LDG), namely, the 'time-area', 'tropical niche conservatism', 'ecological limits' and 'evolutionary speed' livpotheses. We compare simulation outputs to observed diversity gradients in the global reef fish fauna. Our simulations show that these hypotheses are nonmutually exclusive and that their relative influence depends on the time scale considered. Simulations suggest that reef habitat dynamics produced the LDG during deep geological time, while ecological constraints shaped the modern LDG, with a strong influence of the reduction in the latitudinal extent of tropical reefs during the Neogene. Overall, this study illustrates how mechanistic models in ecology and evolution can provide a temporal and spatial understanding of the role of speciation, extinction and dispersal in generating biodiversity patterns.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0962-8452 ISBN Médium
Région Expédition Conférence
Notes WOS:000486417800008 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2650
Lien permanent pour cet enregistrement