|   | 
Détails
   web
Enregistrements
Auteur Chao, A.; Chiu, C.-H.; Villeger, S.; Sun, I.-F.; Thorn, S.; Lin, Y.-C.; Chiang, J.-M.; Sherwin, W.B.
Titre (up) An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures Type Article scientifique
Année 2019 Publication Revue Abrégée Ecol. Monogr.
Volume 89 Numéro 2 Pages Unsp-e01343
Mots-Clés attribute diversity; biodiversity; biological diversity; consensus; conservation; differentiation measures; diversity decomposition; evenness; framework; functional (dis)similarity; functional beta diversity; functional diversity; Hill numbers; phylogenetic diversity; quadratic entropy; similarity; species diversity; species richness; species traits; trait diversity
Résumé Based on the framework of attribute diversity (a generalization of Hill numbers of order q), we develop a class of functional diversity measures sensitive not only to species abundances but also to trait-based species-pairwise functional distances. The new method refines and improves on the conventional species-equivalent approach in three areas: (1) the conventional method often gives similar values (close to unity) to assemblages with contrasting levels of functional diversity; (2) when a distance metric is unbounded, the conventional functional diversity depends on the presence/absence of other assemblages in the study; (3) in partitioning functional gamma diversity into alpha and beta components, the conventional gamma is sometimes less than alpha. To resolve these issues, we add to the attribute-diversity framework a novel concept: tau, the threshold of functional distinctiveness between any two species; here, tau can be chosen to be any positive value. Any two species with functional distance >= tau are treated as functionally equally distinct. Our functional diversity quantifies the effective number of functionally equally distinct species (or “virtual functional groups”) with all pairwise distances at least tau for different species pairs. We advocate the use of two complementary diversity profiles (tau profile and q profile), which depict functional diversity with varying levels of tau and q, respectively. Both the conventional species-equivalent method (i.e., tau is the maximum of species-pairwise distances) and classic taxonomic diversity (i.e., tau is the minimum of non-zero species-pairwise distances) are incorporated into our proposed tau profile for an assemblage. For any type of species-pairwise distance matrices, our attribute-diversity approach allows proper diversity partitioning, with the desired property gamma >= alpha and thus avoids all the restrictions that apply to the conventional diversity decomposition. Our functional alpha and gamma are interpreted as the effective numbers of functionally equally distinct species, respectively, in an assemblage and in the pooled assemblage, while beta is the effective number of equally large assemblages with no shared species and all species in the assemblages being equally distinct. The resulting beta diversity can be transformed to obtain abundance-sensitive Sorensen- and Jaccard-type functional (dis)similarity profiles. Hypothetical and real examples are used to illustrate the framework. Online software and R codes are available to facilitate computations.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0012-9615 ISBN Médium
Région Expédition Conférence
Notes WOS:000477640700001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2620
Lien permanent pour cet enregistrement
 

 
Auteur Moullec, F.; Barrier, N.; Drira, S.; Guilhaumon, F.; Marsaleix, P.; Somot, S.; Ulses, C.; Velez, L.; Shin, Y.-J.
Titre (up) An End-to-End Model Reveals Losers and Winners in a Warming Mediterranean Sea Type Article scientifique
Année 2019 Publication Revue Abrégée Front. Mar. Sci.
Volume 6 Numéro Pages
Mots-Clés Biodiversity scenario; Climate Change; Ecosytem model; End-to-end model; Fishing; Mediterraenan sea; Osmose
Résumé The Mediterranean Sea is now recognized as a hotspot of global change, ranking among the fastest warming ocean regions. In order to project future plausible scenarios of marine biodiversity at the scale of the whole Mediterranean basin, the current challenge is to develop an explicit representation of the multispecies spatial dynamics under the combined influence of fishing pressure and climate change. Notwithstanding the advanced state-of-the-art modelling of food webs in the region, no previous studies have projected the consequences of climate change on marine ecosystems in an integrated way, considering changes in ocean dynamics, in phyto- and zoo-plankton productions, shifts in Mediterranean species distributions and their trophic interactions at the whole basin scale. We used an integrated modelling chain including a high-resolution regional climate model, a regional biogeochemistry model and a food web model OSMOSE to project the potential effects of climate change on biomass and catches for a wide array of species in the Mediterranean Sea. We showed that projected climate change would have large consequences for marine biodiversity by the end of the 21st century under a business-as-usual scenario (RCP8.5 with current fishing mortality). The total biomass of high trophic level species (fish and macroinvertebrates) is projected to increase by 5% and 22% while total catch is projected to increase by 0.3% and 7% by 2021-2050 and 2071-2100, respectively. However, these global increases masked strong spatial and inter-species contrasts. The bulk of increase in catch and biomass would be located in the southeastern part of the basin while total catch could decrease by up to 23% in the western part. Winner species would mainly belong to the pelagic group, are thermophilic and/or exotic, of smaller size and of low trophic level while loser species are generally large-sized, some of them of great commercial interest, and could suffer from a spatial mismatch with potential prey subsequent to a contraction or shift of their geographic range. Given the already poor conditions of exploited resources, our results suggest the need for fisheries management to adapt to future changes and to incorporate climate change impacts in future management strategy evaluation.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 2296-7745 ISBN Médium
Région Expédition Conférence
Notes WOS:000472620400001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2587
Lien permanent pour cet enregistrement
 

 
Auteur Sheehan, E.V.; Vaz, S.; Pettifer, E.; Foster, N.L.; Nancollas, S.J.; Cousens, S.; Holmes, L.; Facq, J.-V.; Germain, G.; Attrill, M.J.
Titre (up) An experimental comparison of three towed underwater video systems using species metrics, benthic impact and performance Type Article scientifique
Année 2016 Publication Revue Abrégée Methods Ecol. Evol.
Volume 7 Numéro 7 Pages 843-852
Mots-Clés biodiversity; Conservation; environmental management; management; marine protected area; marine protected areas; meta-analyses; range; sampling impact; sea; towed video; underwater imagery
Résumé Managing ecological systems, which operate over large spatial scales, is inherently difficult and often requires sourcing data from different countries and organizations. The assumption might be made that data collected using similar methodologies are comparable, but this is rarely tested. Here, benthic video data recorded using different towed underwater video systems (TUVSs) were experimentally compared. Three technically different TUVSs were compared on different seabed types (rocky, mixed ground and sandy) in Kingmere Marine Conservation Zone, off the south coast of England. For each TUVS, species metrics (forward facing camera), seabed impact (backward facing camera) and operational performance (strengths and limitations of equipment and video footage) were compared with the aim of providing recommendations on their future use and comparability of data between different systems. Statistically significant differences between species richness, density, cover and assemblage composition were detected amongst devices and were believed to be mostly due to their optical specifications. As a result of their high image definition and large field of vision both the benthic contacting heavy and benthic tending TUVS provided good quality footage and ecological measurements. However, the heaviest TUVS proved difficult to operate on irregular ground and was found to cause the most impact to the seabed. The lightest TUVS (benthic contacting light) struggled to maintain contact with the seabed. The benthic tending TUVS was able to fly over variable seabed relief and was comparably the least destructive. Results from this study highlight that particular care should be given to sled and optic specifications when developing a medium- or long-term marine protected area monitoring programme. Furthermore, when using data gathered from multiple sources to test ecological questions, different equipment specifications may confound observed ecological differences. A benthic tending TUVS is recommended for benthic surveys over variable habitat types, particularly in sensitive areas, such as marine protected areas.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 2041-210x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1645
Lien permanent pour cet enregistrement
 

 
Auteur Fournier, B.; Mouquet, N.; Leibold, M.A.; Gravel, D.
Titre (up) An integrative framework of coexistence mechanisms in competitive metacommunities Type Article scientifique
Année 2017 Publication Revue Abrégée Ecography
Volume 40 Numéro 5 Pages 630-641
Mots-Clés assembly processes; biodiversity; community ecology; dispersal; metapopulation dynamics; neutral metacommunities; niche; recruitment limitation; Restoration; species-diversity
Résumé Species distribution in a metacommunity varies according to their traits, the distribution of environmental conditions and connectivity among localities. These ingredients contribute to coexistence across spatial scales via species sorting, patch dynamics, mass effects and neutral dynamics. These mechanisms however seldom act in isolation and the impact of landscape configuration on their relative importance remains poorly understood. We present a new model of metacommunity dynamics that simultaneously considers these four possible mechanisms over spatially explicit landscapes and propose a statistical approach to partition their contribution to species distribution. We find that landscape configuration can induce dispersal limitations that have negative consequences for local species richness. This result was more pronounced with neutral dynamics and mass effect than with species sorting or patch dynamics. We also find that the relative importance of the four mechanisms varies not only among landscape configurations, but also among species, with some species being mostly constrained by dispersal and/or drift and others by sorting. Changes in landscape properties might lead to a shift in coexistence mechanisms and, by extension, to a change in community composition. This confirms the importance of considering landscape properties for conservation and management. Our results illustrate the idea that ecological communities are the results of multiple mechanisms acting at the same time and complete our understanding of spatial processes in competitive metacommunities.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0906-7590 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2141
Lien permanent pour cet enregistrement
 

 
Auteur Legras, G.; Loiseau, N.; Gaertner, J.-C.; Poggiale, J.-C.; Gaertner-Mazouni, N.
Titre (up) Assessing functional diversity: the influence of the number of the functional traits Type Article scientifique
Année 2020 Publication Revue Abrégée Theor. Ecol.
Volume 13 Numéro 1 Pages 117-126
Mots-Clés biodiversity; Dissimilarity metric; framework; Functional diversity; Functional traits; global hotspots; Index sensitivity; indexes; mismatch; redundancy; reveals; species richness; Trend analysis; vulnerability
Résumé The impact of the variation of the number of functional traits on functional diversity assessment is still poorly known. Although the covariation between these two parameters may be desirable in some situations (e.g. if adding functional traits provides relevant new functional information), it may also result from mathematical artefacts and lead to misinterpretation of the results obtained. Here, we have tested the behaviour of a set of nine indices widely used for assessing the three main components of functional diversity (i.e. functional richness, evenness and divergence), according to the variation in the number of functional traits. We found that the number of functional traits may strongly impact the values of most of the indices considered, whatever the functional information they contain. The FRic, TOP and n-hypervolume indices that have been developed to characterize the functional richness component appeared to be highly sensitive to the variation in the number of traits considered. Regarding functional divergence, most of the indices considered (i.e. Q, FDis and FSpe) also showed a high degree of sensitivity to the number of traits considered. In contrast, we found that indices used to compute functional evenness (FEve and Ru), as well as one of the indices related to functional divergence (FDiv), are weakly influenced by the variation in the number of traits. All these results suggest that interpretation of most of the functional diversity indices considered cannot only be based on their values as they are, but requires taking into account the way in which they have been computed.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1874-1738 ISBN Médium
Région Expédition Conférence
Notes WOS:000515172600009 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2750
Lien permanent pour cet enregistrement