|   | 
Détails
   web
Enregistrements
Auteur (up) Abgrall, C.; Chauvat, M.; Langlois, E.; Hedde, M.; Mouillot, D.; Salmon, S.; Winck, B.; Forey, E.
Titre Shifts and linkages of functional diversity between above- and below-ground compartments along a flooding gradient Type Article scientifique
Année 2017 Publication Revue Abrégée Funct. Ecol.
Volume 31 Numéro 2 Pages 350-360
Mots-Clés biodiversity; community assembly; community ecology; disturbance; divergence; environmental gradient; feeding guilds; functional traits; microarthropod communities; null models; patterns; plant; plant communities; soil collembola; soil-plant interactions; species traits; trait convergence and trait divergence
Résumé 1. Trait-based approaches have the potential to reveal general and predictive relationships between organisms and ecosystem functioning. However, the mechanisms underlying the functional structure of communities are still unclear. Within terrestrial ecosystems, several studies have shown that many ecological processes are controlled by the interacting above-and belowground compartments. However, few studies have used traits to reveal the functional relationships between plants and soil fauna. Mostly, research combining plants and soil fauna solely used the traits of one assemblage in predictive studies. 2. Above-ground (plants) and below-ground (Collembola) compartments were sampled over a flooding gradient in northern France along the Seine River. First, we measured the effect of flooding on functional and taxonomic assembly within both communities. We then considered the linkages between plant and Collembolan species richness, community traits and assessed whether traits of both compartments converged at high flooding intensity (abiotic filtering) and diverged when this constraint is released (biotic filtering). 3. Species richness of both taxa followed the same bell-shaped pattern along the gradient, while a similar significant pattern of functional richness was only observed for plants. Further analyses revealed a progressive shift from trait convergence to divergence for plants, but not for Collembola, as constraints intensity decreased. Instead, our results highlighted that Collembola traits were mainly linked to the variations in plant traits. This leads, within Collembola assemblages, to convergence of a subset of perception and habitat-related traits for which the relationship with plant traits was assessed. 4. Synthesis. Using a trait-based approach, our study highlighted that functional relationships occur between above-and below-ground compartments. We underlined that functional composition of plant communities plays a key role in structuring Collembola assemblages in addition to the role of abiotic variables. Our study clearly shows that functional diversity provides a new approach to link the above-and below-ground compartments and might, therefore, be further considered when studying ecological processes at the interface between both compartments.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0269-8463 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2091
Lien permanent pour cet enregistrement
 

 
Auteur (up) Albouy, C.; Delattre, V.; Donati, G.; Frolicher, T.L.; Albouy-Boyer, S.; Rufino, M.; Pellissier, L.; Mouillot, D.; Leprieur, F.
Titre Global vulnerability of marine mammals to global warming Type Article scientifique
Année 2020 Publication Revue Abrégée Sci Rep
Volume 10 Numéro 1 Pages 548
Mots-Clés biodiversity; climate-change; conservation; eubalaena-japonica; extinction risk; functional diversity; gray whales; life-history traits; range changes; right whales
Résumé Although extinctions due to climate change are still uncommon, they might surpass those caused by habitat loss or overexploitation over the next few decades. Among marine megafauna, mammals fulfill key and irreplaceable ecological roles in the ocean, and the collapse of their populations may therefore have irreversible consequences for ecosystem functioning and services. Using a trait-based approach, we assessed the vulnerability of all marine mammals to global warming under high and low greenhouse gas emission scenarios for the middle and the end of the 21st century. We showed that the North Pacific Ocean, the Greenland Sea and the Barents Sea host the species that are most vulnerable to global warming. Future conservation plans should therefore focus on these regions, where there are long histories of overexploitation and there are high levels of current threats to marine mammals. Among the most vulnerable marine mammals were several threatened species, such as the North Pacific right whale (Eubalaena japonica) and the dugong (Dugong dugon), that displayed unique combinations of functional traits. Beyond species loss, we showed that the potential extinctions of the marine mammals that were most vulnerable to global warming might induce a disproportionate loss of functional diversity, which may have profound impacts on the future functioning of marine ecosystems worldwide.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 2045-2322 ISBN Médium
Région Expédition Conférence
Notes WOS:000562813800014 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2862
Lien permanent pour cet enregistrement
 

 
Auteur (up) Albouy, C.; Delattre, V.L.; Mérigot, B.; Meynard, C.N.; Leprieur, F.
Titre Multifaceted biodiversity hotspots of marine mammals for conservation priorities Type Article scientifique
Année 2017 Publication Revue Abrégée Diversity Distrib
Volume 23 Numéro 6 Pages 615-626
Mots-Clés conservation; Functional diversity; marine mammals; phylogenetic diversity
Résumé Aim Identifying the multifaceted biodiversity hotspots for marine mammals and their spatial overlap with human threats at the global scale. Location World-wide. Methods We compiled a functional trait database for 121 species of marine mammals characterized by 14 functional traits grouped into five categories. We estimated marine mammal species richness (SR) as well as functional (FD) and phylogenetic diversity (PD) per grid cell (1° × 1°) using the FRic index (a measure of trait diversity as the volume of functional space occupied by the species present in an assemblage) and the PD index (the amount of evolutionary history represented by a set of species), respectively. Finally, we assessed the spatial congruence of these three facets of biodiversity hotspots (defined as 2.5% and 5% of the highest values of SR, FD and PD) with human threats at the global scale. Results We showed that the FRic index was weakly correlated with both SR and the PD index. Specifically, SR and FRic displayed a triangular relationship, that is, increasing variability in FRic along the species richness gradient. We also observed a striking lack of spatial congruence (<0.1%) between current human threats and the distribution of the multiple facets of biodiversity hotspots. Main Conclusions We highlighted that functional diversity calculated using the FRic index is weakly associated with the species richness of marine mammals world-wide. This is one of the most endangered vertebrate groups playing a key ecological role in marine ecosystems. This finding calls for caution when using only species richness as a benchmark for defining marine mammal biodiversity hotspots. The very low level of spatial congruence between hotspots of current threats and those of the multiple facets of marine mammal biodiversity suggests that current biodiversity patterns for this group have already been greatly affected by their history of exploitation.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1472-4642 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2125
Lien permanent pour cet enregistrement
 

 
Auteur (up) Albouy, C.; Lasram, F.B.R.; Velez, L.; Guilhaumon, F.; Meynard, C.N.; Boyer, S.; Benestan, L.; Mouquet, N.; Douzery, E.; Aznar, R.; Troussellier, M.; Somot, S.; Leprieur, F.; Le Loc'h, F.; Mouillot, D.
Titre FishMed: traits, phylogeny, current and projected species distribution of Mediterranean fishes, and environmental data Type Article scientifique
Année 2015 Publication Revue Abrégée Ecology
Volume 96 Numéro 8 Pages 2312-2313
Mots-Clés climate change; coastal fishes; functional diversity; Mediterranean fish species; Mediterranean Sea; Nemomed8; phylogenetic diversity; species distribution models; taxonomic diversity
Résumé The FishMed database provides traits, phylogeny, current and projected species distribution of Mediterranean fishes, and associated sea surface temperature (SST) from the regional oceanic model NEMOMED8. Data for the current geographical distributions of 635 Mediterranean fish species were compiled from a published expert knowledge atlas of fishes of the northern Atlantic and the Mediterranean (FNAM) edited between 1984 and 1986 and from an updated exotic fish species list. Two future sets of projected species distributions were obtained for the middle and end of the 21st century by using an ensemble forecasting approach for 288 coastal Mediterranean fish species based on SST according to the IPPC/SRES A2 scenario implemented with the Mediterranean climatic model NEMOMED8. The functional part of the database encompasses 12 biological and ecological traits (maximal and common lengths, vertical distribution, habitat, migration type, mode of reproduction, sex shift, semelparity, diet type (larvae and adults), social behavior, species origin, and depth) for the 635 fish species. To build the phylogeny we inferred the timing and geographic origins of Mediterranean teleost species diversity using nucleotide sequences collected from GenBank including 62% of Mediterranean teleost species plus nine outgroups. Maximum likelihood Bayesian phylogenetic and dating analyses were calibrated using 20 fossil species. An additional 124 fish species were grafted onto the chronogram according to their taxonomic affinity to obtain a phylogenetic tree including 498 species. Finally we also present the associated SST data for the observed period (1961–1980) and for the middle (2040–2059) and the end of the 21st century (2080–2099) obtained from NEMOMED8 according to the IPCC A2 scenario. The FishMed database might be of interest in the context of global anthropogenic changes as coastal Mediterranean ecosystems are currently recognized as one of the most impacted ecosystems on earth.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1939-9170 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1471
Lien permanent pour cet enregistrement
 

 
Auteur (up) Almoussawi, A.; Lenoir, J.; Jamoneau, A.; Hattab, T.; Wasof, S.; Gallet-Moron, E.; Garzon-Lopez, C.X.; Spicher, F.; Kobaissi, A.; Decocq, G.
Titre Forest fragmentation shapes the alpha-gamma relationship in plant diversity Type Article scientifique
Année 2019 Publication Revue Abrégée J. Veg. Sci.
Volume Numéro Pages
Mots-Clés agricultural landscapes; alpha diversity; anthropogenic disturbances; assemblages; community assembly; community patterns; competition; connectivity; dispersal limitations; gamma diversity; habitat conservation strategies; habitat fragmentation; local-regional richness relationship; metacommunity dynamics; regional species richness; relative importance; saturation; specialists; succession
Résumé Questions Forest fragmentation affects biodiversity locally (alpha diversity) and beyond – at relatively larger scales (gamma diversity) – by increasing dispersal and recruitment limitations. Yet, does an increase in fragmentation affect the relationship between alpha and gamma diversity and what can we learn from it? Location Northern France. Methods We surveyed 116 forest patches across three fragmentation levels: none (continuous forest); intermediate (forest patches connected by hedgerows); and high (isolated forest patches). Plant species richness of both forest specialists and generalists was surveyed at five nested spatial resolutions across each forest patch: 1 m(2); 10 m(2); 100 m(2); 1,000 m(2); and total forest patch area. First, we ran log-ratio models to quantify the alpha-gamma relationship. We did that separately for all possible combinations of fragmentation level (none vs intermediate vs high) x spatial scale (e.g., alpha-1 m(2) vs gamma-10 m(2)) x species type (e.g., alpha-specialists vs gamma-specialists). We then used linear mixed-effects models to analyze the effect of fragmentation level, spatial scale, species type and all two-way interaction terms on the slope coefficient extracted from all log-ratio models. Results We found an interaction effect between fragmentation level and species type, such that forest specialists shifted from a linear (i.e., proportional sampling) to a curvilinear plateau (i.e., community saturation) relationship at low and high fragmentation, respectively, while generalists shifted from a curvilinear to a linear pattern. Conclusions The impact of forest fragmentation on the alpha-gamma relationship supports generalist species persistence over forest specialists, with contrasting mechanisms for these two guilds. As fragmentation increases, forest specialists shift from proportional sampling towards community saturation, thus reducing alpha diversity likely due to dispersal limitation. Contrariwise, generalists shift from community saturation towards proportional sampling, thus increasing alpha diversity likely due to an increase in the edge:core ratio. To ensure long-term conservation of forest specialists, one single large forest patch should be preferred over several small ones.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1100-9233 ISBN Médium
Région Expédition Conférence
Notes WOS:000493723100001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2676
Lien permanent pour cet enregistrement