|   | 
Détails
   web
Enregistrements
Auteur Leroy, B.; Dias, M.S.; Giraud, E.; Hugueny, B.; Jezequel, C.; Leprieur, F.; Oberdorff, T.; Tedesco, P.A.
Titre Global biogeographical regions of freshwater fish species Type Article scientifique
Année 2019 Publication Revue Abrégée J. Biogeogr.
Volume Numéro Pages
Mots-Clés actinopterygians; biogeographical regions; biogeography; bioregionalization; bioregions; connectivity; dispersal; diversity; evolution; freshwater fish; history; homogenization; network; patterns; richness; transition zones; vicariance; world; zoogeographical regions
Résumé (up) Aim To define the major biogeographical regions and transition zones for freshwater fish species. Taxon Strictly freshwater species of actinopterygian fish (i.e. excluding marine and amphidromous fish families). Methods We based our bioregionalization on a global database of freshwater fish species occurrences in drainage basins, which, after filtering, includes 11,295 species in 2,581 basins. On the basis of this dataset, we generated a bipartite (basin-species) network upon which we applied a hierarchical clustering algorithm (the Map Equation) to detect regions. We tested the robustness of regions with a sensitivity analysis. We identified transition zones between major regions with the participation coefficient, indicating the degree to which a basin has species from multiple regions. Results Our bioregionalization scheme showed two major supercontinental regions (Old World and New World, 50% species of the world and 99.96% endemics each). Nested within these two supercontinental regions lie six major regions (Nearctic, Neotropical, Palearctic, Ethiopian, Sino-Oriental and Australian) with extremely high degrees of endemism (above 96% except for the Palearctic). Transition zones between regions were of limited extent compared to other groups of organisms. We identified numerous subregions with high diversity and endemism in tropical areas (e.g. Neotropical), and a few large subregions with low diversity and endemism at high latitudes (e.g. Palearctic). Main conclusions Our results suggest that regions of freshwater fish species were shaped by events of vicariance and geodispersal which were similar to other groups, but with freshwater-specific processes of isolation that led to extremely high degrees of endemism (far exceeding endemism rates of other continental vertebrates), specific boundary locations and limited extents of transition zones. The identified bioregions and transition zones of freshwater fish species reflect the strong isolation of freshwater fish faunas for the past 10-20 million years. The extremely high endemism and diversity of freshwater fish fauna raises many questions about the biogeographical consequences of current introductions and extinctions.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0305-0270 ISBN Médium
Région Expédition Conférence
Notes WOS:000484392300001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2637
Lien permanent pour cet enregistrement
 

 
Auteur Barneche, D.R.; Rezende, E.L.; Parravicini, V.; Maire, Eva; Edgar, G.J.; Stuart-Smith, R.D.; Arias-Gonzalez, J.E.; Ferreira, C.E.L.; Friedlander, A.M.; Green, A.L.; Luiz, O.J.; Rodriguez-Zaragoza, F.A.; Vigliola, L.; Kulbicki, M.; Floeter, S.R.
Titre Body size, reef area and temperature predict global reef-fish species richness across spatial scales Type Article scientifique
Année 2019 Publication Revue Abrégée Glob. Ecol. Biogeogr.
Volume 28 Numéro 3 Pages 315-327
Mots-Clés biodiversity; diversity; patterns; coral-reefs; spatial scale; community assembly; biogeography; extrapolation; local diversity; neutral theory; range size; rarefaction; regional diversity; species energy
Résumé (up) Aim To investigate biotic and abiotic correlates of reef-fish species richness across multiple spatial scales. Location Tropical reefs around the globe, including 485 sites in 109 sub-provinces spread across 14 biogeographic provinces. Time period Present. Major taxa studied 2,523 species of reef fish. Methods We compiled a database encompassing 13,050 visual transects. We used hierarchical linear Bayesian models to investigate whether fish body size, reef area, isolation, temperature, and anthropogenic impacts correlate with reef-fish species richness at each spatial scale (i.e., sites, sub-provinces, provinces). Richness was estimated using coverage-based rarefaction. We also tested whether species packing (i.e., transect-level species richness/m(2)) is correlated with province-level richness. Results Body size had the strongest effect on species richness across all three spatial scales. Reef area and temperature were both positively correlated with richness at all spatial scales. At the site scale only, richness decreased with reef isolation. Species richness was not correlated with proxies of human impacts. Species packing was correlated with species richness at the province level following a sub-linear power function. Province-level differences in species richness were also mirrored by patterns of body size distribution at the site scale. Species-rich provinces exhibited heterogeneous assemblages of small-bodied species with small range sizes, whereas species-poor provinces encompassed homogeneous assemblages composed by larger species with greater dispersal capacity. Main conclusions Our findings suggest that body size distribution, reef area and temperature are major predictors of species richness and accumulation across scales, consistent with recent theories linking home range to species-area relationships as well as metabolic effects on speciation rates. Based on our results, we hypothesize that in less diverse areas, species are larger and likely more dispersive, leading to larger range sizes and less turnover between sites. Our results indicate that changes in province-level (i.e., regional) richness should leave a tractable fingerprint in local assemblages, and that detailed studies on local-scale assemblage composition may be informative of responses occurring at larger scales.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1466-822x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2522
Lien permanent pour cet enregistrement
 

 
Auteur Loiseau, N.; Legras, G.; Gaertner, J.-C.; Verley, P.; Chabanet, P.; Mérigot, B.
Titre Performance of partitioning functional beta-diversity indices: Influence of functional representation and partitioning methods Type Article scientifique
Année 2017 Publication Revue Abrégée Global Ecol. Biogeogr.
Volume 26 Numéro 6 Pages 753-762
Mots-Clés assembly rules; Beta diversity; indices; nestedness-resultant dissimilarity; partitioning; replacement; richness difference; turnover
Résumé (up) Aim Two frameworks (BASVIL and PODCAR), based on two different functional representations (ordination and dendrogram), have been proposed for partitioning overall functional beta diversity into two analogous components: turnover and nestedness-resultant dissimilarity, or replacement and difference of functional richness, respectively. We compared the two frameworks by testing the influence of functional representations and partitioning methods on the measurement of overall functional beta diversity and its components. Innovation We computed beta-diversity indices from the two frameworks on a set of communities simulated according to five scenarios of assembly: random, richness gradient, pure nestedness, pure turnover and mixed turnover/loss scenarios. To disentangle the effects of the partitioning approach and those of the functional representation on measurement of functional beta diversity, we also computed PODCAR indices in multidimensional space. Main conclusions BASVIL and PODCAR frameworks led to different results for overall functional beta diversity and their analogous partitioning components. Most of the difference between the two frameworks was due to the functional representation used. The goodness-of-fit measure (mean squared deviation, mSD) to assess the quality of functional spaces showed that the one computed on the basis of the dendrogram used in PODCAR remained lower than that of the functional ordination considered in BASVIL. In addition, only functional turnover derived from the BASVIL framework is independent of difference in functional richness. Finally, BASVIL measured functional variations derived from nested phenomena while PODCAR did not allow separation of this variation derived from richness difference. However, the sensitivity of BASVIL to functionally extreme species may make it difficult to know whether variations of the nestedness-resultant dissimilarity components are due to a turnover with few extreme species or a loss in functional richness. Particular attention with regard to the properties of the two frameworks is required before drawing conclusions regarding processes that structure communities.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1466-8238 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2136
Lien permanent pour cet enregistrement
 

 
Auteur Monnet, A.C.; Jiguet, F.; Meynard, C.N.; Mouillot, D.; Mouquet, N.; Thuiller, W.; Devictor, V.
Titre Asynchrony of taxonomic, functional and phylogenetic diversity in birds Type Article scientifique
Année 2014 Publication Revue Abrégée Global Ecology and Biogeography
Volume 23 Numéro 7 Pages 780-788
Mots-Clés Beta diversity; Rao; assemblages; beta components; biological diversity; breeding bird survey; climate-change; communities; conservation; evolutionary; functional traits; homogenization; indexes; patterns; species turnover; temporal dynamics
Résumé (up) Aim We assessed the temporal trends of taxonomic, functional and phylogenetic diversities in the French avifauna over the last two decades. Additionally, we investigated whether and how this multifaceted approach to biodiversity dynamics can reveal an increasing similarity of local assemblages in terms of species, traits and/or lineages. Location France. Methods We analysed a large-scale dataset that recorded annual changes in the abundance of 116 breeding birds in France between 1989 and 2012. We decomposed and analysed the spatio-temporal dynamics of taxonomic, phylogenetic and functional diversities and each of their -, – and -components. We also calculated the trend in the mean specialization of bird communities to track the relative success of specialist versus generalist species within communities during the same period. Results We found large variation within and among the temporal trends of each biodiversity facet. On average, we found a marked increase in species and phylogenetic diversity over the period considered, but no particular trend was found for functional diversity. Conversely, changes in -diversities for the three facets were characterized by independent and nonlinear trends. We also found a general increase in the local occurrence and abundance of generalist species within local communities. Main conclusions These results highlight a relative asynchrony of the different biodiversity facets occurring at large spatial scales. We show why a multifaceted approach to biodiversity dynamics is needed to better describe and understand changes in community composition in macroecology and conservation biogeography.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1466-822x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 455
Lien permanent pour cet enregistrement
 

 
Auteur Zupan, L.; Cabeza, M.; Maiorano, L.; Roquet, C.; Devictor, V.; Lavergne, S.; Mouillot, D.; Mouquet, N.; Renaud, J.; Thuiller, W.
Titre Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe Type Article scientifique
Année 2014 Publication Revue Abrégée Diversity and Distributions
Volume 20 Numéro 6 Pages 674-685
Mots-Clés Europe; Species diversity; approach; biodiversity; climate-change; communities; ecological; evolutionary diversity; functional diversity; global patterns; hotspots; nature conservation; phylogenetic diversity; protected areas; spatial biodiversity congruence; species richness; terrestrial vertebrates; unified
Résumé (up) Aim We investigate patterns of phylogenetic diversity in relation to species diversity for European birds, mammals and amphibians to evaluate their congruence and highlight areas of particular evolutionary history. We estimate the extent to which the European network of protected areas (PAs) network retains interesting evolutionary history areas for the three groups separately and simultaneously. Location Europe Methods Phylogenetic (QE(PD)) and species diversity (SD) were estimated using the Rao's quadratic entropy at 10 ' resolution. We determined the regional relationship between QE(PD) and SD for each taxa with a spatial regression model and used the tails of the residuals (QE(RES)) distribution to identify areas of higher and lower QE(PD) than predicted. Spatial congruence of biodiversity between groups was assessed with Pearson correlation coefficient. A simple classification scheme allowed building a convergence map where a convergent pixel equalled to a QE(RES) value of the same sign for the three groups. This convergence map was overlaid to the current PAs network to estimate the level of protection in convergent pixels and compared it to a null expectation built on 1000 randomization of PAs over the landscape. Results QE(RES) patterns across vertebrates show a strong spatial mismatch highlighting different evolutionary histories. Convergent areas represent only 2.7% of the Western Palearctic, with only 8.4% of these areas being covered by the current PAs network while a random distribution would retain 10.4% of them. QE(RES) are unequally represented within PAs: areas with higher QE(PD) than predicted are better covered than expected, while low QE(PD) areas are undersampled. Main conclusions Patterns of diversity strongly diverge between groups of vertebrates in Europe. Although Europe has the world's most extensive PAs network, evolutionary history of terrestrial vertebrates is unequally protected. The challenge is now to reconcile effective conservation planning with a contemporary view of biodiversity integrating multiple facets.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1366-9516 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 856
Lien permanent pour cet enregistrement