|   | 
Détails
   web
Enregistrements
Auteur Amélineau, F.; Grémillet, D.; Bonnet, D.; Bot, T.L.; Fort, J.
Titre Where to Forage in the Absence of Sea Ice? Bathymetry As a Key Factor for an Arctic Seabird Type Article scientifique
Année 2016 Publication Revue Abrégée Plos One
Volume 11 Numéro 7 Pages e0157764
Mots-Clés Birds; Copepods; Foraging; Predation; Seabirds; Sea ice; Trophic interactions; Zooplankton
Résumé The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1932-6203 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1592
Lien permanent pour cet enregistrement
 

 
Auteur Arzul, i.; Chollet, b.; Boyer, s.; Bonnet, d.; Gaillard, j.; Baldi, y.; Robert, m.; Joly, j. p.; Garcia, c.; Bouchoucha, m.
Titre Contribution to the understanding of the cycle of the protozoan parasite Marteilia refringens Type Article scientifique
Année 2013 Publication Revue Abrégée Parasitology
Volume Numéro Pages 1-14
Mots-Clés ,; , parasite life cycle, zooplankton; bivalves, copepods,
Résumé SUMMARY The paramyxean parasite Marteilia refringens infects several bivalve species including European flat oysters Ostrea edulis and Mediterranean mussels Mytilus galloprovincialis. Sequence polymorphism allowed definition of three parasite types ‘M’, ‘O’ and ‘C’ preferably detected in oysters, mussels and cockles respectively. Transmission of the infection from infected bivalves to copepods Paracartia grani could be experimentally achieved but assays from copepods to bivalves failed. In order to contribute to the elucidation of the M. refringens life cycle, the dynamics of the infection was investigated in O. edulis, M. galloprovincialis and zooplankton over one year in Diana lagoon, Corsica (France). Flat oysters appeared non-infected while mussels were infected part of the year, showing highest prevalence in summertime. The parasite was detected by PCR in zooplankton particularly after the peak of prevalence in mussels. Several zooplanktonic groups including copepods, Cladocera, Appendicularia, Chaetognatha and Polychaeta appeared PCR positive. However, only the copepod species Paracartia latisetosa showed positive signal by in situ hybridization. Small parasite cells were observed in gonadal tissues of female copepods demonstrating for the first time that a copepod species other than P. grani can be infected with M. refringens. Molecular characterization of the parasite infecting mussels and zooplankton allowed the distinguishing of three Marteilia types in the lagoon.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1469-8161 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 502
Lien permanent pour cet enregistrement
 

 
Auteur Benedetti, F.; Guilhaumon, F.; Adloff, F.; Ayata, S.-D.
Titre Investigating uncertainties in zooplankton composition shifts under climate change scenarios in the Mediterranean Sea Type Article scientifique
Année 2018 Publication Revue Abrégée Ecography
Volume 41 Numéro 2 Pages 345-360
Mots-Clés marine biodiversity; species distribution models; north-atlantic; beta diversity; calanoid copepods; ecological-niche; envelope models; habitat-suitability; mass mortality; pseudo-absence data
Résumé Ensemble niche modelling has become a common framework to predict changes in assemblages composition under climate change scenarios. The amount of uncertainty generated by the different components of this framework has rarely been assessed. In the marine realm forecasts have usually focused on taxa representing the top of the marine food-web, thus overlooking their basal component: the plankton. Calibrating environmental niche models at the global scale, we modelled the habitat suitability of 106 copepod species and estimated the dissimilarity between present and future zooplanktonic assemblages in the surface Mediterranean Sea. We identified the patterns (species replacement versus nestedness) driving the predicted dissimilarity, and quantified the relative contributions of different uncertainty sources: environmental niche models, greenhouse gas emission scenarios, circulation model configurations and species prevalence. Our results confirm that the choice of the niche modelling method is the greatest source of uncertainty in habitat suitability projections. Presence-only and presence-absence methods provided different visions of the niches, which subsequently lead to different future scenarios of biodiversity changes. Nestedness with decline in species richness is the pattern driving dissimilarity between present and future copepod assemblages. Our projections contrast with those reported for higher trophic levels, suggesting that different components of the pelagic food-web may respond discordantly to future climatic changes.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0906-7590 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2282
Lien permanent pour cet enregistrement
 

 
Auteur Benedetti, F.; Vogt, M.; Righetti, D.; Guilhaumon, F.; Ayata, S.-D.
Titre Do functional groups of planktonic copepods differ in their ecological niches? Type Article scientifique
Année 2018 Publication Revue Abrégée J. Biogeogr.
Volume 45 Numéro 3 Pages 604-616
Mots-Clés climate-change; copepods; species distribution models; north-atlantic; calanus-finmarchicus; mediterranean sea; environmental niche; functional groups; lipid pump; marine ecosystem; oithona-similis; pseudo-absences; trait biogeography; zooplankton; zooplankton fecal pellets
Résumé Aim: To assess the degree of overlap between the environmental niches of marine planktonic copepods and test if the distribution of copepod functional groups differs across environmental gradients. Location: The Mediterranean Sea. Methods: Functional groups were defined based on clustering of functional traits in 106 marine copepod species using a multivariate ordination analysis. Functional traits included maximum body length, feeding mode, spawning strategy and trophic group. Simultaneously, the global distribution of the species was used to model their environmental niches with six environmental variables. For each of these predictors, four niche parameters were derived from the univariate response curve of each species to summarise their environmental preferences and ordinate the species in niche space through a PCA. Finally, the differences in the position in niche space of functional groups were tested with variance analysis. Results: We identified seven copepod functional groups with different distributions along the environmental gradients covered by our study. While carnivorous functional groups were affiliated with oligotrophic and tropical conditions, large and small current-feeding herbivores are associated with colder, more seasonally varying and productive conditions. Small cruising detritivores and other small current-feeding herbivores were not affiliated with specific conditions as their constituting species were scattered in niche space. Main conclusions: Since copepod functional groups occupy distinct ecological niches, ecosystem processes related to these groups are expected to vary across environmental gradients. Conditions favouring large current-feeding herbivores should allow for enhanced fluxes of energy and nutrients through Mediterranean Sea ecosystems, while such fluxes should be weakened where large carnivores and small passive ambush-feeding copepods dominate. Our study supports the development of trait-based zooplankton functional groups in marine ecosystem models.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0305-0270 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2311
Lien permanent pour cet enregistrement