|   | 
Détails
   web
Enregistrements
Auteur Du, X.; Deng, Y.; Li, S.; Escalas, A.; Feng, K.; He, Q.; Wang, Z.; Wu, Y.; Wang, D.; Peng, X.; Wang, S.
Titre Steeper spatial scaling patterns of subsoil microbiota are shaped by deterministic assembly process Type Article scientifique
Année (down) 2020 Publication Revue Abrégée Mol. Ecol.
Volume Numéro Pages
Mots-Clés archaeal communities; assembly mechanism; beta-diversity; biodiversity; biogeography; climate-change; depth; distance decay; drivers; grassland; prokaryote; sequences; soil bacterial communities; spatial scaling; species-area relationship
Résumé Although many studies have investigated the spatial scaling of microbial communities living in surface soils, very little is known about the patterns within deeper strata, nor is the mechanism behind them. Here, we systematically assessed spatial scaling of prokaryotic biodiversity within three different strata (Upper: 0-20 cm, Middle: 20-40 cm, and Substratum: 40-100 cm) in a typical grassland by examining both distance-decay (DDRs) and species-area relationships (SARs), taxonomically and phylogenetically, as well as community assembly processes. Each layer exhibited significant biogeographic patterns in both DDR and SAR (p < .05), with taxonomic turnover rates higher than phylogenetic ones. Specifically, the spatial turnover rates, beta and z values, respectively, ranged from 0.016 +/- 0.005 to 0.023 +/- 0.005 and 0.065 +/- 0.002 to 0.077 +/- 0.004 across soil strata, and both increased with depth. Moreover, the prokaryotic community in grassland soils assembled mainly according to deterministic rather than stochastic mechanisms. By using normalized stochasticity ratio (NST) based on null model, the relative importance of deterministic ratios increased from 48.0 to 63.3% from Upper to Substratum, meanwhile a phylogenetic based method revealed average beta NTI also increased with depth, from -5.29 to 19.5. Using variation partitioning and distance approaches, both geographic distance and soil properties were found to strongly affect biodiversity structure, the proportions increasing with depth, but spatial distance was always the main underlying factor. These indicated increasingly deterministic proportions in accelerating turnover rates for spatial assembly of prokaryotic biodiversity. Our study provided new insights on biogeography in different strata, revealing importance of assembly patterns and mechanisms of prokaryote communities in below-surface soils.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0962-1083 ISBN Médium
Région Expédition Conférence
Notes WOS:000601909000001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2931
Lien permanent pour cet enregistrement
 

 
Auteur Kadarusman; Sugeha, H.Y.; Pouyaud, L.; Hocdé, R.; Hismayasari, I.B.; Gunaisah, E.; Widiarto, S.B.; Arafat, G.; Widyasari, F.; Mouillot, D.; Paradis, E.
Titre A thirteen-million-year divergence between two lineages of Indonesian coelacanths Type Article scientifique
Année (down) 2020 Publication Revue Abrégée Sci Rep
Volume 10 Numéro 1 Pages 192
Mots-Clés biogeography; halmahera; latimeria-chalumnae; living fossils; mindanao; multiple sequence alignment; phylogenies; population; speciation; tectonic evolution
Résumé Coelacanth fishes of the genus Latimeria are the only surviving representatives of a basal lineage of vertebrates that originated more than 400 million years ago. Yet, much remains to be unveiled about the diversity and evolutionary history of these 'living fossils' using new molecular data, including the possibility of 'cryptic' species or unknown lineages. Here, we report the discovery of a new specimen in eastern Indonesia allegedly belonging to the species L. menadoensis. Although this specimen was found about 750km from the known geographical distribution of the species, we found that the molecular divergence between this specimen and others of L. menadoensis was great: 1.8% compared to 0.04% among individuals of L. chalumnae, the other living species of coelacanth. Molecular dating analyses suggested a divergence date of ca. 13 million years ago between the two populations of Indonesian coelacanths. We elaborate a biogeographical scenario to explain the observed genetic divergence of Indonesian coelacanth populations based on oceanic currents and the tectonic history of the region over Miocene to recent. We hypothesize that several populations of coelacanths are likely to live further east of the present capture location, with potentially a new species that remains to be described. Based on this, we call for an international effort to take appropriate measures to protect these fascinating but vulnerable vertebrates which represent among the longest branches on the Tree of Life.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 2045-2322 ISBN Médium
Région Expédition Conférence
Notes WOS:000511157800002 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2737
Lien permanent pour cet enregistrement
 

 
Auteur Puerta, P.; Johnson, C.; Carreiro-Silva, M.; Henry, L.-A.; Kenchington, E.; Morato, T.; Kazanidis, G.; Luis Rueda, J.; Urra, J.; Ross, S.; Wei, C.-L.; Manuel Gonzalez-Irusta, J.; Arnaud-Haond, S.; Orejas, C.
Titre Influence of Water Masses on the Biodiversity and Biogeography of Deep-Sea Benthic Ecosystems in the North Atlantic Type Article scientifique
Année (down) 2020 Publication Revue Abrégée Front. Mar. Sci.
Volume 7 Numéro Pages 239
Mots-Clés antarctic intermediate water; biodiversity; biogeography; climate-change impacts; coral lophelia-pertusa; deep-sea; food-supply mechanisms; global habitat suitability; meridional overturning circulation; ne atlantic; North Atlantic; ocean acidification; porcupine seabight; rockall trough margin; vulnerable marine ecosystems; water masses
Résumé Circulation patterns in the North Atlantic Ocean have changed and re-organized multiple times over millions of years, influencing the biodiversity, distribution, and connectivity patterns of deep-sea species and ecosystems. In this study, we review the effects of the water mass properties (temperature, salinity, food supply, carbonate chemistry, and oxygen) on deep-sea benthic megafauna (from species to community level) and discussed in future scenarios of climate change. We focus on the key oceanic controls on deep-sea megafauna biodiversity and biogeography patterns. We place particular attention on cold-water corals and sponges, as these are ecosystem-engineering organisms that constitute vulnerable marine ecosystems (VME) with high associated biodiversity. Besides documenting the current state of the knowledge on this topic, a future scenario for water mass properties in the deep North Atlantic basin was predicted. The pace and severity of climate change in the deep-sea will vary across regions. However, predicted water mass properties showed that all regions in the North Atlantic will be exposed to multiple stressors by 2100, experiencing at least one critical change in water temperature (+2 degrees C), organic carbon fluxes (reduced up to 50%), ocean acidification (pH reduced up to 0.3), aragonite saturation horizon (shoaling above 1000 m) and/or reduction in dissolved oxygen (> 5%). The northernmost regions of the North Atlantic will suffer the greatest impacts. Warmer and more acidic oceans will drastically reduce the suitable habitat for ecosystem-engineers, with severe consequences such as declines in population densities, even compromising their long-term survival, loss of biodiversity and reduced biogeographic distribution that might compromise connectivity at large scales. These effects can be aggravated by reductions in carbon fluxes, particularly in areas where food availability is already limited. Declines in benthic biomass and biodiversity will diminish ecosystem services such as habitat provision, nutrient cycling, etc. This study shows that the deep-sea VME affected by contemporary anthropogenic impacts and with the ongoing climate change impacts are unlikely to withstand additional pressures from more intrusive human activities. This study serves also as a warning to protect these ecosystems through regulations and by tempering the ongoing socio-political drivers for increasing exploitation of marine resources.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes WOS:000526864100001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2767
Lien permanent pour cet enregistrement
 

 
Auteur Benedetti, F.; Ayata, S.-D.; Irisson, J.-O.; Adloff, F.; Guilhaumon, F.
Titre Climate change may have minor impact on zooplankton functional diversity in the Mediterranean Sea Type Article scientifique
Année (down) 2019 Publication Revue Abrégée Divers. Distrib.
Volume 25 Numéro 4 Pages 568-581
Mots-Clés biogeography; calanus-helgolandicus; climate change; communities; conservation; fish assemblages; framework; functional diversity; future; marine biodiversity; Mediterranean Sea; niche modelling; null model; ocean; trait; zooplankton
Résumé Aim To assess the impact of climate change on the functional diversity of marine zooplankton communities. Location The Mediterranean Sea. Methods We used the functional traits and geographic distributions of 106 copepod species to estimate the zooplankton functional diversity of Mediterranean surface assemblages for the 1965-1994 and 2069-2098 periods. Multiple environmental niche models were trained at the global scale to project the species habitat suitability in the Mediterranean Sea and assess their sensitivity to climate change predicted by several scenarios. Simultaneously, the species traits were used to compute a functional dendrogram from which we identified seven functional groups and estimated functional diversity through Faith's index. We compared the measured functional diversity to the one originated from null models to test if changes in functional diversity were solely driven by changes in species richness. Results All but three of the 106 species presented range contractions of varying intensity. A relatively low decrease of species richness (-7.42 on average) is predicted for 97% of the basin, with higher losses in the eastern regions. Relative sensitivity to climate change is not clustered in functional space and does not significantly vary across the seven copepod functional groups defined. Changes in functional diversity follow the same pattern and are not different from those that can be expected from changes in richness alone. Main conclusions Climate change is not expected to alter copepod functional traits distribution in the Mediterranean Sea, as the most and the least sensitive species are functionally redundant. Such redundancy should buffer the loss of ecosystem functions in Mediterranean zooplankton assemblages induced by climate change. Because the most negatively impacted species are affiliated to temperate regimes and share Atlantic biogeographic origins, our results are in line with the hypothesis of increasingly more tropical Mediterranean communities.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1366-9516 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2582
Lien permanent pour cet enregistrement
 

 
Auteur Matthews, T.J.; Triantis, K.A.; Whittaker, R.J.; Guilhaumon, F.
Titre sars: an R package for fitting, evaluating and comparing species-area relationship models Type Article scientifique
Année (down) 2019 Publication Revue Abrégée Ecography
Volume 42 Numéro 8 Pages 1446-1455
Mots-Clés accumulation; curves; diversity; diversity-area relationship; island biogeography; islands; richness; species-area relationship
Résumé The species-area relationship (SAR) constitutes one of the most general ecological patterns globally. A number of different SAR models have been proposed. Recent work has shown that no single model universally provides the best fit to empirical SAR datasets: multiple models may be of practical and theoretical interest. However, there are no software packages available that a) allow users to fit the full range of published SAR models, or b) provide functions to undertake a range of additional SAR-related analyses. To address these needs, we have developed the R package 'sars' that provides a wide variety of SAR-related functionality. The package provides functions to: a) fit 20 SAR models using non-linear and linear regression, b) calculate multi-model averaged curves using various information criteria, and c) generate confidence intervals using bootstrapping. Plotting functions allow users to depict and scrutinize the fits of individual models and multi-model averaged curves. The package also provides additional SAR functionality, including functions to fit, plot and evaluate the random placement model using a species-sites abundance matrix, and to fit the general dynamic model of oceanic island biogeography. The 'sars' R package will aid future SAR research by providing a comprehensive set of simple to use tools that enable in-depth exploration of SARs and SAR-related patterns. The package has been designed to allow other researchers to add new functions and models in the future and thus the package represents a resource for future SAR work that can be built on and expanded by workers in the field.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0906-7590 ISBN Médium
Région Expédition Conférence
Notes WOS:000477975800010 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2625
Lien permanent pour cet enregistrement