|   | 
Détails
   web
Enregistrements
Auteur Lezama-Ochoa, A.; Grados, D.; Lebourges Dhaussy, A.; Irigoien, X.; Chaigneau, A.; Bertrand, A.
Titre (up) Biological characteristics of the hydrological landscapes in the Bay of Biscay in spring 2009 Type Article scientifique
Année 2015 Publication Revue Abrégée Fisheries Oceanography
Volume 24 Numéro 1 Pages 26-41
Mots-Clés acoustics; Bay of Biscay; Biogeography; fish; horizontal distribution; hydrological structures; macrozooplankton; patterns
Résumé In the present study we investigated the biogeography of macrozooplankton and fish biomass in the Bay of Biscay. In this region, we defined six different landscapes based on the hydrogeographical characteristics observed in spring 2009. We then related landscape's characteristics and environmental parameters such as light attenuation depth and chlorophyll-a with macrozooplankton and fish acoustic biomass. Hydrodynamic structures together with coastal influences (river discharges, predation pressure and depth preference) and vertical thermohaline structure/mixing (feeding modes and ability to stay in preferred layers) appeared as the main factors determining the biological distribution. Besides, variance partitioning was used to assess the respective roles played by the hydrological environment, the geographical space and the biological environment alone, and their interactions. Results revealed that: (i) macrozooplankton and fish have a preference for different hydrogeographical landscapes; (ii) the association between hydrological conditions and geographical features, i.e. the spatial structure of the hydrological environment, plays a key role in the distribution of macrozooplankton; and (iii) prey-predator relationships have to be taken into account to provide a comprehensive characterization of habitat suitability.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1054-6006 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1109
Lien permanent pour cet enregistrement
 

 
Auteur Barneche, D.R.; Rezende, E.L.; Parravicini, V.; Maire, Eva; Edgar, G.J.; Stuart-Smith, R.D.; Arias-Gonzalez, J.E.; Ferreira, C.E.L.; Friedlander, A.M.; Green, A.L.; Luiz, O.J.; Rodriguez-Zaragoza, F.A.; Vigliola, L.; Kulbicki, M.; Floeter, S.R.
Titre (up) Body size, reef area and temperature predict global reef-fish species richness across spatial scales Type Article scientifique
Année 2019 Publication Revue Abrégée Glob. Ecol. Biogeogr.
Volume 28 Numéro 3 Pages 315-327
Mots-Clés biodiversity; diversity; patterns; coral-reefs; spatial scale; community assembly; biogeography; extrapolation; local diversity; neutral theory; range size; rarefaction; regional diversity; species energy
Résumé Aim To investigate biotic and abiotic correlates of reef-fish species richness across multiple spatial scales. Location Tropical reefs around the globe, including 485 sites in 109 sub-provinces spread across 14 biogeographic provinces. Time period Present. Major taxa studied 2,523 species of reef fish. Methods We compiled a database encompassing 13,050 visual transects. We used hierarchical linear Bayesian models to investigate whether fish body size, reef area, isolation, temperature, and anthropogenic impacts correlate with reef-fish species richness at each spatial scale (i.e., sites, sub-provinces, provinces). Richness was estimated using coverage-based rarefaction. We also tested whether species packing (i.e., transect-level species richness/m(2)) is correlated with province-level richness. Results Body size had the strongest effect on species richness across all three spatial scales. Reef area and temperature were both positively correlated with richness at all spatial scales. At the site scale only, richness decreased with reef isolation. Species richness was not correlated with proxies of human impacts. Species packing was correlated with species richness at the province level following a sub-linear power function. Province-level differences in species richness were also mirrored by patterns of body size distribution at the site scale. Species-rich provinces exhibited heterogeneous assemblages of small-bodied species with small range sizes, whereas species-poor provinces encompassed homogeneous assemblages composed by larger species with greater dispersal capacity. Main conclusions Our findings suggest that body size distribution, reef area and temperature are major predictors of species richness and accumulation across scales, consistent with recent theories linking home range to species-area relationships as well as metabolic effects on speciation rates. Based on our results, we hypothesize that in less diverse areas, species are larger and likely more dispersive, leading to larger range sizes and less turnover between sites. Our results indicate that changes in province-level (i.e., regional) richness should leave a tractable fingerprint in local assemblages, and that detailed studies on local-scale assemblage composition may be informative of responses occurring at larger scales.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1466-822x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2522
Lien permanent pour cet enregistrement
 

 
Auteur Benedetti, F.; Ayata, S.-D.; Irisson, J.-O.; Adloff, F.; Guilhaumon, F.
Titre (up) Climate change may have minor impact on zooplankton functional diversity in the Mediterranean Sea Type Article scientifique
Année 2019 Publication Revue Abrégée Divers. Distrib.
Volume 25 Numéro 4 Pages 568-581
Mots-Clés biogeography; calanus-helgolandicus; climate change; communities; conservation; fish assemblages; framework; functional diversity; future; marine biodiversity; Mediterranean Sea; niche modelling; null model; ocean; trait; zooplankton
Résumé Aim To assess the impact of climate change on the functional diversity of marine zooplankton communities. Location The Mediterranean Sea. Methods We used the functional traits and geographic distributions of 106 copepod species to estimate the zooplankton functional diversity of Mediterranean surface assemblages for the 1965-1994 and 2069-2098 periods. Multiple environmental niche models were trained at the global scale to project the species habitat suitability in the Mediterranean Sea and assess their sensitivity to climate change predicted by several scenarios. Simultaneously, the species traits were used to compute a functional dendrogram from which we identified seven functional groups and estimated functional diversity through Faith's index. We compared the measured functional diversity to the one originated from null models to test if changes in functional diversity were solely driven by changes in species richness. Results All but three of the 106 species presented range contractions of varying intensity. A relatively low decrease of species richness (-7.42 on average) is predicted for 97% of the basin, with higher losses in the eastern regions. Relative sensitivity to climate change is not clustered in functional space and does not significantly vary across the seven copepod functional groups defined. Changes in functional diversity follow the same pattern and are not different from those that can be expected from changes in richness alone. Main conclusions Climate change is not expected to alter copepod functional traits distribution in the Mediterranean Sea, as the most and the least sensitive species are functionally redundant. Such redundancy should buffer the loss of ecosystem functions in Mediterranean zooplankton assemblages induced by climate change. Because the most negatively impacted species are affiliated to temperate regimes and share Atlantic biogeographic origins, our results are in line with the hypothesis of increasingly more tropical Mediterranean communities.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1366-9516 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2582
Lien permanent pour cet enregistrement
 

 
Auteur Benedetti, F.; Vogt, M.; Righetti, D.; Guilhaumon, F.; Ayata, S.-D.
Titre (up) Do functional groups of planktonic copepods differ in their ecological niches? Type Article scientifique
Année 2018 Publication Revue Abrégée J. Biogeogr.
Volume 45 Numéro 3 Pages 604-616
Mots-Clés climate-change; copepods; species distribution models; north-atlantic; calanus-finmarchicus; mediterranean sea; environmental niche; functional groups; lipid pump; marine ecosystem; oithona-similis; pseudo-absences; trait biogeography; zooplankton; zooplankton fecal pellets
Résumé Aim: To assess the degree of overlap between the environmental niches of marine planktonic copepods and test if the distribution of copepod functional groups differs across environmental gradients. Location: The Mediterranean Sea. Methods: Functional groups were defined based on clustering of functional traits in 106 marine copepod species using a multivariate ordination analysis. Functional traits included maximum body length, feeding mode, spawning strategy and trophic group. Simultaneously, the global distribution of the species was used to model their environmental niches with six environmental variables. For each of these predictors, four niche parameters were derived from the univariate response curve of each species to summarise their environmental preferences and ordinate the species in niche space through a PCA. Finally, the differences in the position in niche space of functional groups were tested with variance analysis. Results: We identified seven copepod functional groups with different distributions along the environmental gradients covered by our study. While carnivorous functional groups were affiliated with oligotrophic and tropical conditions, large and small current-feeding herbivores are associated with colder, more seasonally varying and productive conditions. Small cruising detritivores and other small current-feeding herbivores were not affiliated with specific conditions as their constituting species were scattered in niche space. Main conclusions: Since copepod functional groups occupy distinct ecological niches, ecosystem processes related to these groups are expected to vary across environmental gradients. Conditions favouring large current-feeding herbivores should allow for enhanced fluxes of energy and nutrients through Mediterranean Sea ecosystems, while such fluxes should be weakened where large carnivores and small passive ambush-feeding copepods dominate. Our study supports the development of trait-based zooplankton functional groups in marine ecosystem models.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0305-0270 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2311
Lien permanent pour cet enregistrement
 

 
Auteur Reygondeau, G.; Longhurst, A.; Martinez, E.; Beaugrand, G.; Antoine, D.; Maury, O.
Titre (up) Dynamic biogeochemical provinces in the global ocean Type Article scientifique
Année 2013 Publication Revue Abrégée Global Biogeochemical Cycles
Volume 27 Numéro 4 Pages 1046-1058
Mots-Clés biogeochemical province; Biogeography; biome; meteo-oceanic oscillations; seasonality
Résumé In recent decades, it has been found useful to partition the pelagic environment using the concept of biogeochemical provinces, or BGCPs, within each of which it is assumed that environmental conditions are distinguishable and unique at global scale. The boundaries between provinces respond to features of physical oceanography and, ideally, should follow seasonal and interannual changes in ocean dynamics. But this ideal has not been fulfilled except for small regions of the oceans. Moreover, BGCPs have been used only as static entities having boundaries that were originally established to compute global primary production. In the present study, a new statistical methodology based on non-parametric procedures is implemented to capture the environmental characteristics within 56 BGCPs. Four main environmental parameters (bathymetry, chlorophyll a concentration, surface temperature, and salinity) are used to infer the spatial distribution of each BGCP over 1997–2007. The resulting dynamic partition allows us to integrate changes in the distribution of BGCPs at seasonal and interannual timescales, and so introduces the possibility of detecting spatial shifts in environmental conditions.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1944-9224 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 279
Lien permanent pour cet enregistrement