|   | 
Détails
   web
Enregistrements
Auteur Killen, S.S.; Marras, S.; McKenzie, D.J.
Titre Fast growers sprint slower: effects of food deprivation and re-feeding on sprint swimming performance in individual juvenile European sea bass Type Article scientifique
Année 2014 Publication (down) Revue Abrégée Journal of Experimental Biology
Volume 217 Numéro 6 Pages 859-865
Mots-Clés Compensatory growth; Ecophysiology; Food deprivation; Foraging; Locomotion; atlantic; catch-up growth; cod; dicentrarchus-labrax; ecological performance; gadus-morhua; long-term starvation; metabolic responses; salmon; teleost fish; trade-off; trade-offs; trout oncorhynchus-mykiss
Résumé While many ectothermic species can withstand prolonged fasting without mortality, food deprivation may have sublethal effects of ecological importance, including reductions in locomotor ability. Little is known about how such changes in performance in individual animals are related to either mass loss during food deprivation or growth rate during re-feeding. This study followed changes in the maximum sprint swimming performance of individual European sea bass, Dicentrarchus labrax, throughout 45 days of food deprivation and 30 days of re-feeding. Maximum sprint speed did not show a significant decline until 45 days of food deprivation. Among individuals, the reduction in sprinting speed at this time was not related to mass loss. After 30 days of re-feeding, mean sprinting speed had recovered to match that of control fish. Among individuals, however, maximum sprinting speed was negatively correlated with growth rate after the resumption of feeding. This suggests that the rapid compensatory growth that occurs during re-feeding after a prolonged fast carries a physiological cost in terms of reduced sprinting capacity, the extent of which shows continuous variation among individuals in relation to growth rate. The long-term repeatability of maximum sprint speed was low when fish were fasted or fed a maintenance ration, but was high among control fish fed to satiation. Fish that had been previously food deprived continued to show low repeatability in sprinting ability even after the initiation of ad libitum feeding, probably stemming from variation in compensatory growth among individuals and its associated negative effects on sprinting ability. Together, these results suggest that food limitation can disrupt hierarchies of maximum sprint performance within populations. In the wild, the cumulative effects on locomotor capacity of fasting and re-feeding could lead to variable survival among individuals with different growth trajectories following a period of food deprivation.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0022-0949 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 601
Lien permanent pour cet enregistrement
 

 
Auteur Dalongeville, A.; Andrello, M.; Mouillot, D.; Albouy, C.; Manel, S.
Titre Ecological traits shape genetic diversity patterns across the Mediterranean Sea: a quantitative review on fishes Type Article scientifique
Année 2016 Publication (down) Revue Abrégée J. Biogeogr.
Volume 43 Numéro 4 Pages 845-857
Mots-Clés atlantic bluefin tuna; bass dicentrarchus-labrax; climate-change; cod gadus-morhua; ecological traits; effective population-size; genetic diversity; gilthead sea; life-history traits; marine fishes; marine populations; Mediterranean Sea; microsatellite markers; microsatellites; mitochondrial; mitochondrial DNA; molecular markers; population genetics
Résumé AimWe set out to identify the determinants of the variation in genetic diversity among fish species and test whether multi-species genetic diversity is randomly distributed in space. LocationMediterranean Sea. MethodsWe collected genetic diversity data from 39 published studies on Mediterranean fishes (31 species) along with the spatial coordinates of the sampling sites. We focused on microsatellite heterozygosity (151 data points) and mitochondrial haplotype diversity (201 data points). We used linear regressions to link genetic diversity and 11 ecological traits. We also tested for spatial autocorrelation and trends in the residuals. ResultsAmong-species variation in microsatellite heterozygosity was explained by three ecological traits: vertical distribution, migration type and body length. Variation in mitochondrial haplotype diversity was also explained by vertical distribution and migration type, and by reproductive strategy (semelparity). However, vertical distribution and migration type showed opposite effects on microsatellites and mitochondrial diversity. After accounting for the effects of ecological traits, no spatial pattern was detected, except for one of the species considered. Main conclusionsEcological factors explain an important proportion of the among-species genetic diversity. These results suggest that life history strategies of the species influence the variation of microsatellite diversity indirectly through their effect on effective population size, while the spatial variations of genetic diversity seem to be too complex to be identified in our analysis. We found very different effects of traits on mitochondrial and nuclear DNA diversity, which can be explained by the specificities of mitochondrial DNA (absence of recombination, maternal inheritance and non-neutrality).
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0305-0270 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1627
Lien permanent pour cet enregistrement
 

 
Auteur Chouvelon, T.; Brach-Papa, C.; Auger, D.; Bodin, N.; Bruzac, S.; Crochet, S.; Degroote, M.; Hollanda, S.J.; Hubert, C.; Knoery, J.; Munschy, C.; Puech, A.; Rozuel, E.; Thomas, B.; West, W.; Bourjea, J.; Nikolic, N.
Titre Chemical contaminants (trace metals, persistent organic pollutants) in albacore tuna from western Indian and south-eastern Atlantic Oceans: Trophic influence and potential as tracers of populations Type Article scientifique
Année 2017 Publication (down) Revue Abrégée Sci. Total Environ.
Volume 596 Numéro Pages 481-495
Mots-Clés Bioaccumulation; biscay northeast atlantic; enhanced bioaccumulation; feeding ecology; Inorganic elements; Intrinsic markers; marine food webs; mercury concentrations; merluccius-merluccius; Organic contaminants; organochlorine compounds; polychlorinated-biphenyls; stable-isotope analysis; Stable isotopes; thunnus-alalunga; Top predator
Résumé Albacore tuna (Thunnus alalunga) is a highly commercial fish species harvested in the world's Oceans. Identifying the potential links between populations is one of the key tools that can improve the current management across fisheries areas. In addition to characterising populations' contamination state, chemical compounds can help refine foraging areas, individual flows and populations' structure, especially when combined with other intrinsic biogeochemical (trophic) markers such as carbon and nitrogen stable isotopes. This study investigated the bioaccumulation of seven selected trace metals – chromium, nickel, copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg) and lead – in the muscle of 443 albacore tunas, collected over two seasons and/or years in the western Indian Ocean (WIO: Reunion Island and Seychelles) and in the south-eastern Atlantic Ocean (SEAO: South Africa). The main factor that explained metal concentration variability was the geographic origin of fish, rather than the size and the sex of individuals, or the season/year of sampling. The elements Cu, Zn, Cd and Hg indicated a segregation of the geographic groups most clearly. For similar sized-individuals, tunas from SEAO had significantly higher concentrations in Cu, Zn and Cd, but lower Hg concentrations than those from WIO. Information inferred from the analysis of trophic markers (delta C-13, delta N-15) and selected persistent organic pollutants, as well as information on stomach contents, corroborated the geographical differences obtained by trace metals. It also highlighted the influence of trophic ecology on metal bioaccumulation. Finally, this study evidenced the potential of metals and chemical contaminants in general as tracers, by segregating groups of individuals using different food webs or habitats, to better understand spatial connectivity at the population scale. Limited flows of individuals between the SEAO and the WIO are suggested. Albacore as predatory fish also provided some information on environmental and food web chemical contamination in the different study areas. (C) 2017 Elsevier B.V. All rights reserved.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0048-9697 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2139
Lien permanent pour cet enregistrement
 

 
Auteur Thomas, J.K.; Birceanu, O.; Sadoul, B.; Vijayan, M.M.
Titre Bisphenol A in Eggs Impairs the Long-Term Stress Performance of Rainbow Trout in Two Generations Type Article scientifique
Année 2018 Publication (down) Revue Abrégée Environ. Sci. Technol.
Volume 52 Numéro 14 Pages 7951-7961
Mots-Clés atlantic salmon; fish; growth; impacts; pacific salmon; plasma-cortisol; rats; reproduction; salmon oncorhynchus-gorbuscha; spawning grounds
Résumé Salmonids are ecologically, economically, and culturally important fish species in North America, but whether contaminants in the environment play a role in their population decline is unclear. We tested the hypothesis that bisphenol A (BPA) deposition in eggs, mimicking a maternal transfer scenario, compromises the stress axis functioning and target tissues stress response in two generations of a model salmonid species, rainbow trout (Oncorhynchus mykiss). Eggs were enriched with 0, 4, or 40 ng of BPA, fertilized, and reared in clean water for two generations. The fish were subjected to an acute stressor after a year in both generations to test their stress performances. Trout raised from BPA-enriched eggs showed impaired stressor-mediated plasma cortisol and lactate response in the Fl and F2 generations, respectively. Key genes involved in cortisol biosynthesis in the head kidney, as well as stress- and growth-related transcripts in the liver and muscle, were impacted either in the F1 and/or F2 generations. Our results underscore the long-term impact associated with BPA in eggs, mimicking a maternal transfer scenario, on the stress performance of trout in two generations. The results highlight the need for developing novel biomarkers to predict long-term and generational toxicities in salmonids.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0013-936x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2395
Lien permanent pour cet enregistrement
 

 
Auteur Bourjea, J.; Clermont, S.; Delgado, A.; Murua, H.; Ruiz, J.; Ciccione, S.; Chavance, P.
Titre Marine turtle interaction with purse-seine fishery in the Atlantic and Indian oceans: Lessons for management Type Article scientifique
Année 2014 Publication (down) Revue Abrégée Biological Conservation
Volume 178 Numéro Pages 74-87
Mots-Clés Atlantic Ocean; Bycatch; Fishery impacts; fishery management; Indian Ocean; Marine turtle
Résumé Bycatch of endangered marine turtles is a growing issue for the management of all fisheries, including the oceanic purse-seine fishery. The aim of this study was to assess the spatial and temporal variation in bycatch rates of these species in the entire European purse-seine fishery operating in the Atlantic and Indian oceans. The study was based on data collected through observer programs from 1995 to 2011. During that period, a total of 15 913 fishing sets were observed, including 6 515 on Drifting Fish Aggregating Devices (DFADs) and 9 398 on free swimming schools, representing a global coverage of 10.3% and 5.1% of the total fishing activity in the Atlantic and Indian Ocean, respectively. Moreover, from 2003 to 2011, 14 124 specific observations were carried out on DFADs to check turtle entanglement in the net covering DFADs. We found that the purse-seine fishery has a very low impact on marine turtles. We estimated that the annual number of individuals incidentally captured was 218 (SD = 150) and 250 (SD = 157) in the Atlantic and Indian Ocean, respectively, with more than 75% being released alive. The present study also investigated the impact of DFADs; which is considered a key conservation issue for this fishery. Drifting objects may play a key role in aggregating juveniles of marine turtles, implying the need for improving their construction to avoid entanglement (e.g. avoiding nets in the structure); however, based on our study it is not the main source of incidental captures of marine turtles in this fishery.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0006-3207 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 349
Lien permanent pour cet enregistrement