|   | 
Détails
   web
Enregistrements
Auteur Stelfox, M.; Lett, C.; Reid, G.; Souch, G.; Sweet, M.
Titre Minimum drift times infer trajectories of ghost nets found in the Maldives Type Article scientifique
Année 2020 Publication (down) Revue Abrégée Mar. Pollut. Bull.
Volume 154 Numéro Pages 111037
Mots-Clés atlantic; barnacles; Biofouling; Drift trajectories; floating debris; Ghost nets; Gill nets; growth; impacts; Lagrangian; marine debris; near-surface currents; plastic debris; Plastics; Plastisphere; Pollution; Purse seine; transport; wind
Résumé This study explores methods to estimate minimum drift times of ghost nets found in the Maldives with the aim of identifying a putative origin. We highlight that percentage cover of biofouling organisms and capitulum length of Lepas anatifera are two methods that provide these estimates. Eight ghost nets were collected in the Maldives and estimated drift times ranged between 7.5 and 101 days. Additionally, Lagrangian simulations identified drift trajectories of 326 historical ghost nets records. Purse seine fisheries (associated with Korea, Mauritius, the Philippines, Spain, France and Seychelles) and gill nets from Sri Lanka were identified as 'high risk' fisheries with regard to likley origins of ghost nets drifting into the Maldives. These fisheries are active in areas where dense particle clusters occured (drift trajectories between 30 and 120 days). Interestingly, ghost nets drifting less than 30 days however, remained inside the exclusive economic zone of the Maldivian archipelago highlighting potential illegal, unreported and unregulated fishing activity is occuring in this area. This study therefore points to the urgent need for gear loss reporting to be undertaken, especially by purse seine and gill net fisheries in order to ascertain the source of this major threat to marine life. This should also be coupled with an improvment in the data focused on spatial distribution of the abandoned, lost or discarded fishing gear originating from both largeand small-scale fisheries.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0025-326x ISBN Médium
Région Expédition Conférence
Notes WOS:000528205900012 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2798
Lien permanent pour cet enregistrement
 

 
Auteur Reygondeau, G.; Guidi, L.; Beaugrand, G.; Henson, S.A.; Koubbi, P.; MacKenzie, B.R.; Sutton, T.T.; Fioroni, M.; Maury, O.
Titre Global biogeochemical provinces of the mesopelagic zone Type Article scientifique
Année 2018 Publication (down) Revue Abrégée J. Biogeogr.
Volume 45 Numéro 2 Pages 500-514
Mots-Clés community; classification; ecology; ocean; macroecology; biogeography; north-atlantic; export; biogeochemical provinces; environmental division; mesopelagic; objective methodology; Ocean; particle-size; Twilight zone; world
Résumé Aim: Following the biogeographical approach implemented by Longhurst for the epipelagic layer, we propose here to identify a biogeochemical 3-D partition for the mesopelagic layer. The resulting partition characterizes the main deep environmental biotopes and their vertical boundaries on a global scale, which can be used as a geographical and ecological framework for conservation biology, ecosystem-based management and for the design of oceanographic investigations. Location: The global ocean. Methods: Based on the most comprehensive environmental climatology available to date, which is both spatially and vertically resolved (seven environmental parameters), we applied a combination of clustering algorithms (c-means, k-means, partition around medoids and agglomerative with Ward's linkage) associated with a nonparametric environmental model to identify the vertical and spatial delineation of the mesopelagic layer. Results: First, we show via numerical interpretation that the vertical division of the pelagic zone varies and, hence, is not constant throughout the global ocean. Indeed, a latitudinal gradient is found between the epipelagic-mesopelagic and mesopelagic-bathypelagic vertical limits. Second, the mesopelagic layer is shown here to be composed of 13 distinguishable Biogeochemical Provinces. Each province shows a distinct range of environmental conditions and characteristic 3-D distributions. Main conclusions: The historical definition of the mesopelagic zone is here revisited to define a 3-D geographical framework and characterize all the deep environmental biotopes of the deep global ocean. According to the numerical interpretation of mesopelagic boundaries, we reveal that the vertical division of the zone is not constant over the global ocean (200-1,000 m) but varies between ocean basin and with latitude. We also provide evidence of biogeochemical division of the mesopelagic zone that is spatially structured in a similar way than the epipelagic in the shallow waters but varies in the deep owing to a change of the environmental driving factors.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0305-0270 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2287
Lien permanent pour cet enregistrement
 

 
Auteur Mendoza‐Portillo, V.; Galván‐Tirado, C.; Portnoy, D.S.; Valenzuela‐Quiñonez, F.; Domínguez‐Domínguez, O.; Durand, J.-D.; Pérez‐Urbiola, J.C.; León, F.J.G.-D.
Titre Genetic diversity and structure of circumtropical almaco jack, Seriola rivoliana: tool for conservation and management Type Article scientifique
Année 2020 Publication (down) Revue Abrégée Journal of Fish Biology
Volume 97 Numéro 3 Pages 882-894
Mots-Clés Atlantic Ocean; conservation; gene flow; genetic populations; Pacific Ocean; pelagic fish
Résumé The almaco jack, Seriola rivoliana, is a circumtropical pelagic fish of importance both in commercial fisheries and in aquaculture. To understand levels of genetic diversity within and among populations in the wild, population genetic structure and the relative magnitude of migration were assessed using mtDNA sequence data and single nucleotide polymorphisms (SNPs) from individuals sampled from locations in the Pacific and Atlantic Oceans. A total of 25 variable sites of cytochrome c oxidase subunit 1 and 3678 neutral SNPs were recovered. Three genetic groups were identified, with both marker types distributed in different oceanic regions: Pacific-1 in central Pacific, Pacific-2 in eastern Pacific and Atlantic in western Atlantic. Nonetheless, the analysis of SNP identified a fourth population in the Pacific coast of Baja California Sur, Mexico (Pacific-3), whereas that of mtDNA did not. This mito-nuclear discordance is likely explained by a recently diverged Pacific-3 population. In addition, two mtDNA haplogroups were found within the western Atlantic, likely indicating that the species came into the Atlantic from the Indian Ocean with historical gene flow from the eastern Pacific. Relative gene flow among ocean basins was low with rm < 0.2, whereas in the eastern Pacific it was asymmetric and higher from south to north (rm > 0.79). The results reflect the importance of assessing genetic structure and gene flow of natural populations for the purposes of sustainable management.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1095-8649 ISBN Médium
Région Expédition Conférence
Notes WOS:000552346200001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2810
Lien permanent pour cet enregistrement
 

 
Auteur Benedetti, F.; Vogt, M.; Righetti, D.; Guilhaumon, F.; Ayata, S.-D.
Titre Do functional groups of planktonic copepods differ in their ecological niches? Type Article scientifique
Année 2018 Publication (down) Revue Abrégée J. Biogeogr.
Volume 45 Numéro 3 Pages 604-616
Mots-Clés climate-change; copepods; species distribution models; north-atlantic; calanus-finmarchicus; mediterranean sea; environmental niche; functional groups; lipid pump; marine ecosystem; oithona-similis; pseudo-absences; trait biogeography; zooplankton; zooplankton fecal pellets
Résumé Aim: To assess the degree of overlap between the environmental niches of marine planktonic copepods and test if the distribution of copepod functional groups differs across environmental gradients. Location: The Mediterranean Sea. Methods: Functional groups were defined based on clustering of functional traits in 106 marine copepod species using a multivariate ordination analysis. Functional traits included maximum body length, feeding mode, spawning strategy and trophic group. Simultaneously, the global distribution of the species was used to model their environmental niches with six environmental variables. For each of these predictors, four niche parameters were derived from the univariate response curve of each species to summarise their environmental preferences and ordinate the species in niche space through a PCA. Finally, the differences in the position in niche space of functional groups were tested with variance analysis. Results: We identified seven copepod functional groups with different distributions along the environmental gradients covered by our study. While carnivorous functional groups were affiliated with oligotrophic and tropical conditions, large and small current-feeding herbivores are associated with colder, more seasonally varying and productive conditions. Small cruising detritivores and other small current-feeding herbivores were not affiliated with specific conditions as their constituting species were scattered in niche space. Main conclusions: Since copepod functional groups occupy distinct ecological niches, ecosystem processes related to these groups are expected to vary across environmental gradients. Conditions favouring large current-feeding herbivores should allow for enhanced fluxes of energy and nutrients through Mediterranean Sea ecosystems, while such fluxes should be weakened where large carnivores and small passive ambush-feeding copepods dominate. Our study supports the development of trait-based zooplankton functional groups in marine ecosystem models.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0305-0270 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2311
Lien permanent pour cet enregistrement
 

 
Auteur Ferrari, S.; Horri, K.; Allal, F.; Vergnet, A.; Benhaim, D.; Vandeputte, M.; Chatain, B.; Begout, M.-L.
Titre Heritability of Boldness and Hypoxia Avoidance in European Seabass, Dicentrarchus labrax Type Article scientifique
Année 2016 Publication (down) Revue Abrégée PLoS One
Volume 11 Numéro 12 Pages e0168506
Mots-Clés atlantic salmon; behavioral plasticity; confinement stress; individual-differences; rainbow-trout; rearing conditions; Risk-taking; salmon salmo-salar; stress-coping styles; trout oncorhynchus-mykiss
Résumé To understand the genetic basis of coping style in European seabass, fish from a full factorial mating (10 females x 50 males) were reared in common garden and individually tagged. Individuals coping style was characterized through behavior tests at four different ages, categorizing fish into proactive or reactive: a hypoxia avoidance test (at 255 days post hatching, dph) and 3 risk-taking tests (at 276, 286 and 304 dph). We observed significant heritability of the coping style, higher for the average of risk-taking scores (h(2) = 0.45 +/- 0.14) than for the hypoxia avoidance test (h(2) = 0.19 +/- 0.10). The genetic correlations between the three risk-taking scores were very high (r(A) = 0.96-0.99) showing that although their repeatability was moderately high (r(P) = 0.64-0.72), successive risk-taking tests evaluated the same genetic variation. A mild genetic correlation between the results of the hypoxia avoidance test and the average of risk-taking scores (0.45 +/- 0.27) suggested that hypoxia avoidance and risk-taking tests do not address exactly the same behavioral and physiological responses. Genetic correlations between weight and risk taking traits showed negative values whatever the test used in our population i.e. reactive individual weights were larger. The results of this quantitative genetic analysis suggest a potential for the development of selection programs based on coping styles that could increase seabass welfare without altering growth performances. Overall, it also contributes to a better understanding of the origin and the significance of individual behavioral differences.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1932-6203 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2071
Lien permanent pour cet enregistrement