bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur Coll, M.; Steenbeek, J.; Sole, J.; Palomera, I.; Christensen, V. doi  openurl
  Titre (up) Modelling the cumulative spatial-temporal effects of environmental drivers and fishing in a NW Mediterranean marine ecosystem Type Article scientifique
  Année 2016 Publication Revue Abrégée Ecol. Model.  
  Volume 331 Numéro Pages 100-114  
  Mots-Clés acoustic estimation; anchovy engraulis-encrasicolus; climate-change; Cumulative effects; Ecopath with Ecosim; environment; european hake; exploited ecosystems; fishing; food-web model; food webs; hake merluccius-merluccius; protected areas; south catalan sea; trawling disturbance  
  Résumé To realistically predict spatial-temporal dynamics of species in marine ecosystems it is essential to consider environmental conditions in conjunction with human activities and food web dynamics. In this study, we used Ecospace, the spatial-temporal dynamic module of Ecopath with Ecosim (EwE) food web model, to drive a spatially explicit marine food web model representing the Southern Catalan Sea (NW Mediterranean) with various environmental drivers and with fishing. We then evaluated the individual and joint effects of environmental conditions and fishing in various compartments of the food web. First we used a previously developed EwE model fitted to time series of data from 1978 to 2010 as a baseline configuration. The model included 40 functional groups and four fishing fleets. We first ran the original Ecospace spatial-temporal dynamic model using the original habitat configuration, in addition to fishing, and we predicted species distributions and abundances. Afterwards, we ran the new habitat foraging capacity model using the most important environmental drivers linked with the Ebro River delta dynamics (salinity, temperature, and primary production), in addition to depth, substrate and fishing, and we compared results with those from the original implementation of Ecospace. Three commercial species, European hake (Merluccius merluccius), anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus), were used to analyse results. Species distributions more closely matched the empirical information available from the study area when using the new habitat capacity model. Results suggested that the historical impacts of fishing and environmental conditions on the biomass and distributions of hake, anchovy and sardine were not additive, but mainly cumulative with a synergistic or antagonistic effect. Fishing had the highest impact on spatial modelling results while the spatial distribution of primary producers and depth followed in importance. This study contributes to the development of more reliable predictions of regional change in marine ecosystems of the Mediterranean Sea. (C) 2016 Elsevier B.V. All rights reserved.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0304-3800 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 1643  
Lien permanent pour cet enregistrement
 

 
Auteur Carvalho, P.G.; Jupiter, S.D.; Januchowski-Hartley, F.A.; Goetze, J.; Claudet, J.; Weeks, R.; Humphries, A.; White, C. doi  openurl
  Titre (up) Optimized fishing through periodically harvested closures Type Article scientifique
  Année 2019 Publication Revue Abrégée J. Appl. Ecol.  
  Volume 56 Numéro 8 Pages 1927-1936  
  Mots-Clés bioeconomic model; conservation; coral-reef fishes; fish behaviour; fisheries management; management; marine protected areas; marine reserves; new-zealand; outcomes; periodically harvested closures; population dynamics; vulnerability; yield  
  Résumé Periodically harvested closures are a widespread, centuries-old form of fisheries management that protects fish between pulse harvests and can generate high harvest efficiency by reducing fish wariness of fishing gear. However, the ability for periodic closures to also support high fisheries yields and healthy marine ecosystems is uncertain, despite increased promotion of periodic closures for managing fisheries and conserving ecosystems in the Indo-Pacific. We developed a bioeconomic fisheries model that considers changes in fish wariness, based on empirical field research, and quantified the extent to which periodic closures can simultaneously maximize harvest efficiency, fisheries yield and conservation of fish stocks. We found that periodic closures with a harvest schedule represented by closure for one to a few years between a single pulse harvest event can generate equivalent fisheries yield and stock abundance levels and greater harvest efficiency than achievable under conventional fisheries management with or without a permanent closure. Optimality of periodic closures at maximizing the triple objective of high harvest efficiency, high fisheries yield, and high stock abundance was robust to fish life history traits and to all but extreme levels of overfishing. With moderate overfishing, there emerged a trade-off between periodic closures that maximized harvest efficiency and no-take permanent closures that maximized yield; however, the gain in harvest efficiency outweighed the loss in yield for periodic closures when compared with permanent closures. Only with extreme overfishing, where fishing under nonspatial management would reduce the stock to <= 18% of its unfished level, was the harvest efficiency benefit too small for periodic closures to best meet the triple objective compared with permanent closures. Synthesis and applications. We show that periodically harvested closures can, in most cases, simultaneously maximize harvest efficiency, fisheries yield, and fish stock conservation beyond that achievable by no-take permanent closures or nonspatial management. Our results also provide design guidance, indicating that short closure periods between pulse harvest events are most appropriate for well-managed fisheries or areas with large periodic closures, whereas longer closure periods are more appropriate for small periodic closure areas and overfished systems.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0021-8901 ISBN Médium  
  Région Expédition Conférence  
  Notes WOS:000478601300007 Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2619  
Lien permanent pour cet enregistrement
 

 
Auteur Bouchoucha, M.; Pecheyran, C.; Gonzalez, J.L.; Lenfant, P.; Darnaude, A.M. doi  openurl
  Titre (up) Otolith fingerprints as natural tags to identify juvenile fish life in ports Type Article scientifique
  Année 2018 Publication Revue Abrégée Estuar. Coast. Shelf Sci.  
  Volume 212 Numéro Pages 210-218  
  Mots-Clés coastal habitats; Coastal areas; Contamination; elemental fingerprints; Fish; genus diplodus; la-icpms; nursery habitats; Nursery habitats; situ speciation measurements; sparid fishes; stable-isotopes; thin-films dgt; water chemistry; western mediterranean sea  
  Résumé The construction of ports has caused substantial habitat destruction in coastal areas previously used as nursery grounds by many fish species, with consequences to fish stocks. These artificial coastal areas might provide alternative nursery habitats for several species for juvenile fish abundances and growth in ports, although their contribution to adult stocks had never been estimated. The variability of otolith composition in the juveniles of two Diplodus species was investigated in three contrasting port areas and two adjacent coastal juvenile habitats of the Bay of Toulon (northwestern Mediterranean) in order to determine the possible use of otolith fingerprints as natural tags for the identification of juvenile fishes in ports. The global accuracy of discrimination between ports and coastal areas was very high (94%) irrespective of species, suggesting that otolith fingerprints can be used with confidence to retrospectively identify past residency in the ports of this bay. However, Ba was systematically the most discriminating element, since its concentrations in otoliths were generally higher outside ports than in inside them, probably due to river runoff. Moreover, otolith signatures varied greatly by species and between sampling sites. Furthermore, although Cu and Pb concentrations in water were at least 2.3-34-fold higher inside ports than outside, this was not consistently reflected in fish otoliths, confirming that spatial differences in otolith concentrations depend on the species and do not directly reflect differences in environmental contamination levels. Therefore, it seems unlikely that otolith microchemistry could provide a universal fingerprint capable of discriminating ports from other coastal areas. Nevertheless, the contribution of ports to adult fish populations can be determined well by establishing a library of otolith fingerprints for all juvenile habitats.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0272-7714 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2427  
Lien permanent pour cet enregistrement
 

 
Auteur Goetze, J.; Langlois, T.; Claudet, J.; Januchowski-Hartley, F.; Jupiter, S.D. doi  openurl
  Titre (up) Periodically harvested closures require full protection of vulnerable species and longer closure periods Type Article scientifique
  Année 2016 Publication Revue Abrégée Biol. Conserv.  
  Volume 203 Numéro Pages 67-74  
  Mots-Clés areas; biomass; Fiji; Fisheries management; life-history; Locally managed marine areas; Marine conservation; marine reserves; predatory fish; Recovery; reef fish communities; responses; small-scale fisheries; stereo-video; vulnerability  
  Résumé Periodically harvested closures (PHCs) are small fisheries closures with objectives such as sustaining fisheries and conserving biodiversity and have become one of the most common forms of nearshore marine management in the Western Pacific. Although PHCs can provide both short-term conservation and fisheries benefits, their potential as a long-term management strategy remains unclear. Through empirical assessment of a single harvest event in each of five PHCs, we determined whether targeted fishes that differ in their vulnerability to fishing recovered to pre-harvest conditions (the state prior to last harvest) and demonstrated post-harvest recovery benefits after 1 year of re-closure. For low and moderately vulnerable species, two PHCs provided significant pre-harvest benefits and one provided significant post-harvest recovery benefits, suggesting a contribution to longer-term sustainability. PHCs with a combination of high compliance and longer closing times are more likely to provide fisheries benefits and recover from harvest events, however, no benefits were observed across any PHCs for highly vulnerable species. We recommend PHCs have longer closure periods before being harvested and species that are highly vulnerable to fishing (e.g. large species of; grouper, wrasse and parrotfish) are avoided during harvests to avoid overexploitation and increase the sustainability of small-scale fisheries. (C) 2016 Elsevier Ltd. All rights reserved.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0006-3207 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 1695  
Lien permanent pour cet enregistrement
 

 
Auteur Pellissier, L.; Leprieur, F.; Parravicini, V.; Cowman, P.F.; Kulbicki, M.; Litsios, G.; Olsen, S.M.; Wisz, M.S.; Bellwood, D.R.; Mouillot, D. url  doi
openurl 
  Titre (up) Quaternary coral reef refugia preserved fish diversity Type Article scientifique
  Année 2014 Publication Revue Abrégée Science  
  Volume 344 Numéro 6187 Pages 1016-1019  
  Mots-Clés abundance; areas; assembly rules; cradles; global patterns; gradient; hotspots; marine biodiversity; museums; species richness  
  Résumé The most prominent pattern in global marine biogeography is the biodiversity peak in the Indo-Australian Archipelago. Yet the processes that underpin this pattern are still actively debated. By reconstructing global marine paleoenvironments over the past 3 million years on the basis of sediment cores, we assessed the extent to which Quaternary climate fluctuations can explain global variation in current reef fish richness. Comparing global historical coral reef habitat availability with the present-day distribution of 6316 reef fish species, we find that distance from stable coral reef habitats during historical periods of habitat loss explains 62% of the variation in fish richness, outweighing present-day environmental factors. Our results highlight the importance of habitat persistence during periods of climate change for preserving marine biodiversity.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0036-8075 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 801  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: