|   | 
Détails
   web
Enregistrements
Auteur Robert, M.; Dagorn, L.; Lopez, J.; Moreno, G.; Deneubourg, J.L.
Titre (up) Does social behavior influence the dynamics of aggregations formed by tropical tunas around floating objects ? An experimental approach Type Article scientifique
Année 2013 Publication Revue Abrégée Journal of Experimental Marine Biology and Ecology
Volume 440 Numéro Pages 238-243
Mots-Clés Aggregation; Binary choice; FADs; Social behavior; tuna
Résumé Tropical tunas associate with objects floating at the surface of the ocean, a behavior widely exploited by fishers. However, the respective roles played by environmental variables and behavioral processes (e.g., social behavior) in the formation of these aggregations remain elusive. To investigate the role of social behavior in the dynamics of such aggregations, we used the binary choice approach. The experimental design comprised two close and identical anchored fish aggregating devices (FADS) equipped with an echo sounder buoy to monitor the aggregated biomass of tuna under each device. Analysis of the results entailed characterizing whether the aggregated biomass is distributed asymmetrically (indicative of social behavior playing a role in the dynamics) or symmetrically between the two close and identical FADs, and comparing the results with theoretical distributions based on different definitions of basic units (individual fish or small schools). The results suggest that social interactions underlie aggregation processes, which represents a major advance in our understanding of these aggregations, a priority for science-based fishery management. While recognizing the logistical and technical constraints, we encourage the development of experimental studies (e.g., in which animals are presented with controlled situations) to enhance our understanding of the behavior of large pelagic fish.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0022-0981 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 249
Lien permanent pour cet enregistrement
 

 
Auteur Briscoe, D.K.; Hobday, A.J.; Carlisle, A.; Scales, K.; Eveson, J.P.; Arrizabalaga, H.; Druon, J.N.; Fromentin, J.-M.
Titre (up) Ecological bridges and barriers in pelagic ecosystems Type Article scientifique
Année 2017 Publication Revue Abrégée Deep-Sea Res. Part II-Top. Stud. Oceanogr.
Volume 140 Numéro Pages 182-192
Mots-Clés arctic marine mammals; atlantic bluefin tuna; Billfish; Brazilian episode; climate-change; el-nino; interannual variation; Marine mammal; marlin makaira-nigricans; Migration corridors; Oceanographic features; population connectivity; satellite archival tags; sea-turtles; site fidelity; species distribution; thunnus-maccoyii; Tuna
Résumé Many highly mobile species are known to use persistent pathways or corridors to move between habitat patches in which conditions are favorable for particular activities, such as breeding or foraging. In the marine realm, environmental variability can lead to the development of temporary periods of anomalous oceanographic conditions that can connect individuals to areas of habitat outside a population's usual range, or alternatively, restrict individuals from areas usually within their range, thus acting as ecological bridges or ecological barriers. These temporary features can result in novel or irregular trophic interactions and changes in population spatial dynamics, and, therefore, may have significant implications for management of marine ecosystems. Here, we provide evidence of ecological bridges and barriers in different ocean regions, drawing upon five case studies in which particular oceanographic conditions have facilitated or restricted the movements of individuals from highly migratory species. We discuss the potential population-level significance of ecological bridges and barriers, with respect to the life history characteristics of different species, and inter- and intra-population variability in habitat use. Finally, we summarize the persistence of bridge dynamics with time, our ability to monitor bridges and barriers in a changing climate, and implications for forecasting future climate mediated ecosystem change.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0967-0645 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2178
Lien permanent pour cet enregistrement
 

 
Auteur Bodin, N.; Chassot, E.; Sardenne, F.; Zudaire, I.; Grande, M.; Dhurmeea, Z.; Murua, H.; Barde, J.
Titre (up) Ecological data for western Indian Ocean tuna Type Article scientifique
Année 2018 Publication Revue Abrégée Ecology
Volume 99 Numéro 5 Pages 1245-1245
Mots-Clés energetics; fatty acids; lipids; morphometrics; multi-tissues; proteins; stable isotopes; trophic ecology; tropical marine ecosystems; tuna fisheries
Résumé Tuna are marine apex predators that inhabit the tropical and sub-tropical waters of the Indian Ocean where they support socially and economically important fisheries. Key component of pelagic communities, tuna are bioindicator species of anthropogenic and climate-induced changes through modifications of the structure and related energy-flow of food webs and ecosystems. The IndianEcoTuna dataset provides a panel of ecological tracers measured in four soft tissues (white muscle, red muscle, liver, gonads) from 1,364 individuals of four species, i.e., the albacore (ALB, Thunnus alalunga), the bigeye (BET, T. obesus), the skipjack (SKJ, Katsuwomus pelamis), and the yellowfin (YFT, T. albacares), collected throughout the western Indian Ocean from 2009 to 2015. Sampling was carried out during routine monitoring programs, at sea by observers onboard professional vessels or at landing. For each record, the type of fishing gear, the conservation mode, as well as the fishing date and catch location are provided. Individuals were sampled to span a wide range of body sizes: 565 ALB with fork length from 58 to 118 cm, 155 BET from 29.5 to 173 cm, 304 SKJ from 30 to 74 cm, and 340 YFT from 29 to 171.5 cm. The IndianEcoTuna dataset combines: (1) 9,512 records of carbon and nitrogen stable isotopes (percent element weights, δ13C and δ15N values) in 1,185 fish, (2) 887 concentrations of total proteins in 242 fish, (3) 8,356 concentrations of total lipids and three lipid classes (triacylglycerols TAG; phospholipids PL; sterols ST) in 695 fish, and (4) 1,150 and 1,033 profiles of neutral and polar fatty acids in 397 and 342 fish, respectively. Information on sex and weights of the whole fish, gonads, liver and stomach is provided. Because of the essential trophic role and wide-ranging of tuna in marine systems, and the large panel of tropho-energetic tracers and derived-key quantitative parameters provided (e.g., niche width, trophic position, condition indices), the IndianEcoTuna dataset should be of high interest for global and regional research on marine trophic ecology and food web analysis, as well as on the impacts of anthropogenic changes on Indian Ocean marine ecosystems. There are no copyright restrictions for research and/or teaching purposes. Usage of the dataset must include citation of this Data Paper.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1939-9170 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2373
Lien permanent pour cet enregistrement
 

 
Auteur Dalongeville, A.; Andrello, M.; Mouillot, D.; Albouy, C.; Manel, S.
Titre (up) Ecological traits shape genetic diversity patterns across the Mediterranean Sea: a quantitative review on fishes Type Article scientifique
Année 2016 Publication Revue Abrégée J. Biogeogr.
Volume 43 Numéro 4 Pages 845-857
Mots-Clés atlantic bluefin tuna; bass dicentrarchus-labrax; climate-change; cod gadus-morhua; ecological traits; effective population-size; genetic diversity; gilthead sea; life-history traits; marine fishes; marine populations; Mediterranean Sea; microsatellite markers; microsatellites; mitochondrial; mitochondrial DNA; molecular markers; population genetics
Résumé AimWe set out to identify the determinants of the variation in genetic diversity among fish species and test whether multi-species genetic diversity is randomly distributed in space. LocationMediterranean Sea. MethodsWe collected genetic diversity data from 39 published studies on Mediterranean fishes (31 species) along with the spatial coordinates of the sampling sites. We focused on microsatellite heterozygosity (151 data points) and mitochondrial haplotype diversity (201 data points). We used linear regressions to link genetic diversity and 11 ecological traits. We also tested for spatial autocorrelation and trends in the residuals. ResultsAmong-species variation in microsatellite heterozygosity was explained by three ecological traits: vertical distribution, migration type and body length. Variation in mitochondrial haplotype diversity was also explained by vertical distribution and migration type, and by reproductive strategy (semelparity). However, vertical distribution and migration type showed opposite effects on microsatellites and mitochondrial diversity. After accounting for the effects of ecological traits, no spatial pattern was detected, except for one of the species considered. Main conclusionsEcological factors explain an important proportion of the among-species genetic diversity. These results suggest that life history strategies of the species influence the variation of microsatellite diversity indirectly through their effect on effective population size, while the spatial variations of genetic diversity seem to be too complex to be identified in our analysis. We found very different effects of traits on mitochondrial and nuclear DNA diversity, which can be explained by the specificities of mitochondrial DNA (absence of recombination, maternal inheritance and non-neutrality).
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0305-0270 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1627
Lien permanent pour cet enregistrement
 

 
Auteur Pons, M.; Branch, T.A.; Melnychuk, M.C.; Jensen, O.P.; Brodziak, J.; Fromentin, J.M.; Harley, S.J.; Haynie, A.C.; Kell, L.T.; Maunder, M.N.; Parma, A.M.; Restrepo, V.R.; Sharma, R.; Ahrens, R.; Hilborn, R.
Titre (up) Effects of biological, economic and management factors on tuna and billfish stock status Type Article scientifique
Année 2017 Publication Revue Abrégée Fish Fish
Volume 18 Numéro 1 Pages 1-21
Mots-Clés Fisheries management; marine conservation; stock assessment; stock status; Tuna fisheries
Résumé Commercial tunas and billfishes (swordfish, marlins and sailfish) provide considerable catches and income in both developed and developing countries. These stocks vary in status from lightly exploited to rebuilding to severely depleted. Previous studies suggested that this variability could result from differences in life-history characteristics and economic incentives, but differences in exploitation histories and management measures also have a strong effect on current stock status. Although the status (biomass and fishing mortality rate) of major tuna and billfish stocks is well documented, the effect of these diverse factors on current stock status and the effect of management measures in rebuilding stocks have not been analysed at the global level. Here, we show that, particularly for tunas, stocks were more depleted if they had high commercial value, were long-lived species, had small pre-fishing biomass and were subject to intense fishing pressure for a long time. In addition, implementing and enforcing total allowable catches (TACs) had the strongest positive influence on rebuilding overfished tuna and billfish stocks. Other control rules such as minimum size regulations or seasonal closures were also important in reducing fishing pressure, but stocks under TAC implementations showed the fastest increase of biomass. Lessons learned from this study can be applied in managing large industrial fisheries around the world. In particular, tuna regional fisheries management organizations should consider the relative effectiveness of management measures observed in this study for rebuilding depleted large pelagic stocks.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1467-2979 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2079
Lien permanent pour cet enregistrement