bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur Mullon, C.; Guillotreau, P.; Galbraith, E.D.; Fortilus, J.; Chaboud, C.; Bopp, L.; Aumont, O.; Kaplan, D. url  doi
openurl 
  Titre Exploring future scenarios for the global supply chain of tuna Type Article scientifique
  Année 2017 Publication Revue Abrégée Deep Sea Research Part II: Topical Studies in Oceanography  
  Volume 140 Numéro Pages 251-267  
  Mots-Clés climate change; Global supply chain; marine protected area; Scenarios; Tuna  
  Résumé The abundance of tuna, an important top predator that ranges throughout tropical and subtropical oceans, is now largely determined by fishing activity. Fishing activity, in turn, is determined by the interaction of fish availability, fishing capacity, fishing costs and global markets for tuna products. In the face of overfishing, the continued sustainable supply of tuna is likely to require improved global governance, that would benefit from modeling frameworks capable of integrating market forces with the availability of fish in order to consider alternative future projections. Here we describe such a modeling framework, in which we develop several simple, contrasting scenarios for the development of the tuna supply chain in order to illustrate the utility of the approach for global evaluation of management strategies for tuna and other complex, stock-structured fisheries. The model includes multiple national and multi-national fishing fleets, canneries and fresh/frozen markets, and connects these to global consumers using a network of flows. The model is calibrated using recent data on fish catch, cannery and fresh/frozen production, and consumption. Scenarios explore the control on future outcomes in the global tuna fishery by representing, in a simple way, the effects of (1) climate change, (2) changes in the global demand for tuna, and (3) changes in the access to fishing grounds (marine reserves). The results emphasize the potential importance of increasing demand in provoking a global collapse, and suggest that controlling tuna production by limiting technical efficiency is a potential countermeasure. Finally we discuss the outcomes in terms of potential extensions of the scenario approach allowed by this global network model of the tuna supply chain.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection (down) Numéro de collection Edition  
  ISSN 0967-0645 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2098  
Lien permanent pour cet enregistrement
 

 
Auteur Ruiz, J.; Batty, A.; Chavance, P.; McElderry, H.; Restrepo, V.; Sharples, P.; Santos, J.; Urtizberea, A. url  doi
openurl 
  Titre Electronic monitoring trials on in the tropical tuna purse-seine fishery Type Article scientifique
  Année 2015 Publication Revue Abrégée ICES J. Mar. Sci.  
  Volume 72 Numéro 4 Pages 1201-1213  
  Mots-Clés Bycatch; catch composition; data collection; electronic monitoring system; observers; Purse seining; Tropical tuna  
  Résumé The difficulty of ensuring adequate statistical coverage of whole fleets is a challenge for the implementation of observer programmes and may reduce the usefulness of the data they obtain for management purposes. This makes it necessary to find cost-effective alternatives. Electronic monitoring (EM) systems are being used in some fisheries as an alternative or a complement to human observers. The objective of this study was to test the use and reliability of EM on the tropical tuna purse-seine fishery. To achieve this objective, seven trips of tuna purse seiners operating in the three Oceans were closely monitored to compare the information provided by EM and on-board observers to determine if EM can reliably document fishing effort, set type, tuna catch, and bycatch. Total tuna catch per set was not significantly different between EM and observer datasets; however, regarding species composition, only main species matched between EM and observers. Success on set-type identification using EM varied between 98.3 and 56.3%, depending on the camera placement. Overall, bycatch species were underestimated by EM, but large bodied species, such as billfishes, were well documented. The analyses in this study showed that EM can be used to determine the fishing effort (number of sets) and total tuna catch as reliably as observers can. Set-type identification also had very promising results, but indicated that refinement of the methods is still needed. To be fully comparable with observer data, improvements for accurately estimating the bycatch will need to be developed in the application and use of the EM system. Operational aspects that need to be improved for an EM programme to be implemented include standardizing installation and on-board catch handling methodology as well as improvements in video technology deployment.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue en Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection (down) Numéro de collection Edition  
  ISSN 1054-3139, 1095-9289 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1335  
Lien permanent pour cet enregistrement
 

 
Auteur Amandé, M.; Ariz, J.; Chassot, E.; Molina, A.D. de; Gaertner, D.; Murua, H.; Pianet, R.; Ruiz, J.; Chavance, P. url  doi
openurl 
  Titre Bycatch of the European purse seine tuna fishery in the Atlantic Ocean for the 2003-2007 period Type Article scientifique
  Année 2010 Publication Revue Abrégée Aquatic Living Resources  
  Volume 23 Numéro 4 Pages 353-362  
  Mots-Clés atlantic Ocean; Bycatch; discards; Purse seining; Tuna fisheries  
  Résumé Bycatch of several groups of species and their characteristics are presented for the period 2003 to 2007 for the European purse seine tuna fishery operating in the Atlantic Ocean. Data were collected through French and Spanish observer programmes and represented a total of 27 trips corresponding to 2.9% coverage. Bycatch is defined as non-targeted species and small or damaged target species. Bycatch species composition, main species length, sex ratio and the fate of the most common species are presented first. Stratified ratios relative to landings of major commercial tunas were then used to estimate the total bycatch; these ratios were considered the most appropriate variable for extrapolation. Stratification was based on the fishing mode (free school vs. floating object), season (quarters) and spatial areas. The annual average bycatch was estimated at about 6400 t, corresponding to a mean annual value of 80.8 t per 1000 t of tuna landed or 7.5% of the total catch. Tunas represent 83% (67.2 t/1000 t) of the total bycatch, followed by other bony fishes (10%, 7.8 t/1000 t), billfishes (5%, 4.0 t/1000 t), sharks (1%, 0.9 t/1000 t) and rays (1%, 0.9 t/1000 t). Based on estimates of the annual bycatch, 16% was kept on board and sold in local markets.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection (down) Numéro de collection Edition  
  ISSN 0990-7440 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel LL @ pixluser @ collection 56  
Lien permanent pour cet enregistrement
 

 
Auteur Escalle, L.; Gaertner, D.; Chavance, P.; Delgado de Molina, A.; Ariz, J.; Mérigot, B. doi  openurl
  Titre Forecasted consequences of simulated FAD moratoria in the Atlantic and Indian Oceans on catches and bycatches Type Article scientifique
  Année 2017 Publication Revue Abrégée ICES J. Mar. Sci.  
  Volume 74 Numéro 3 Pages 780-792  
  Mots-Clés area; Bycatch; ecosystem approach to fisheries; fish aggregation device; management; Megafauna; Monte Carlo simulations; Purse-seine fishery; time; time-area restriction; tropical tuna purse-seine fishery; Tuna  
  Résumé Given the increasingly extensive use of drifting fish aggregation devices (FADs) by the purse-seine fisheries targeting tropical tunas, fishing effort restrictions have been introduced to manage tropical tuna stocks. However, these measures are focused on the protection of juvenile tunas and do not take account of the potential impact on bycatch or associated megafauna (whales and whale sharks). An iterative “fishing-day” Monte Carlo simulation model was developed to investigate the consequences on tropical tunas and bycatch of introducing extensive area 6-month moratoria on FAD activities. The model allowed for variability in a range of plausible values of the parameters characterizing the fishing operations conducted by European purse-seiners in the eastern tropical Atlantic and western Indian Oceans for the period 2005-2014. Monte Carlo simulations, using probabilities based on these fishery data, were carried out for the French and Spanish fishing fleets separately to account for differences in fishing strategies. The models predicted a decrease in FAD sets and an increase in free school sets. As a consequence, the catch of small tuna (<10 kg) decreased while the catch of large tuna (>= 10 kg) increased, leading to an overall increase in tuna catch of 100-200 tons/year/vessel in the Atlantic Ocean, and a decrease of 400-1500 tons/year/vessel in the Indian Ocean. The bycatch decreased in the Indian Ocean, while in the Atlantic Ocean billfishes, turtles and chondrichthyans bycatch increased slightly and other bony fishes decreased. Because fishing practices were modified, whale and whale shark associated sets increased slightly in the Indian Ocean.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection (down) Numéro de collection Edition  
  ISSN 1054-3139 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2105  
Lien permanent pour cet enregistrement
 

 
Auteur Dueri, S.; Guillotreau, P.; Jiménez-Toribio, R.; Oliveros-Ramos, R.; Bopp, L.; Maury, O. url  doi
openurl 
  Titre Food security or economic profitability? Projecting the effects of climate and socioeconomic changes on global skipjack tuna fisheries under three management strategies Type Article scientifique
  Année 2016 Publication Revue Abrégée Global Environmental Change  
  Volume 41 Numéro Pages 1-12  
  Mots-Clés Bioeconomic model; climate change; fishery management; Mey; Msy; Skipjack tuna  
  Résumé We investigate the interactions between anthropogenic climate change, socioeconomic developments and tuna fishery management strategies. For this purpose, we use the APECOSM-E model to map the effects of climate change and commercial fishing on the distribution of skipjack tuna biomass in the three oceans, combined with a new bioeconomic module representing the rent or profit of skipjack fisheries. For forcing, we use Representative Concentration Pathway (RCP) 8.5, the highest emission scenario for greenhouse gas concentrations presented in the IPCC’s Fifth Assessment Report (AR5), and the IPCC Socioeconomic Shared Pathway (SSP) 3, which is characterized by low economic development and a strong increase in the world population. We first investigate the impact of climate change on regional skipjack abundance, catches and profits in three oceans (Atlantic, Indian and Pacific) in 2010, 2050 and 2095. We then study the effects of three management strategies (maximum sustainable yield or MSY, maximum economic yield or MEY, and zero rent or ZR) on the future distribution of fishing fleets between oceans and on global economic rent. Our model projections for 2050 and 2095 show an increase in global skipjack biomass compared to 2010 and major changes in its distribution, impacting local and regional fishing efforts. The Pacific Ocean will continue to dominate the skipjack market. In our modeling of management strategies, the currently predominant MSY strategy would have been unprofitable in 2010, due to a decreased catch per unit effort (CPUE). In the future, however, technological developments should increase fishing efficiency and make MSY profitable. In all the scenarios, a MEY strategy is more profitable than MSY but leads to the lowest catches and the highest prices. This raises ethical questions in a world where food security may become a top priority. In the scenarios where MSY generates an economic loss (e.g. 2010), a ZR strategy allows global stocks to be exploited at high but still profitable levels. Conversely, in the scenarios where MSY is profitable, (e.g. 2095) ZR leads to overfishing and smaller global catches. We conclude that the most appropriate management strategy at any time is likely to change as environmental and socioeconomic conditions evolve. The decision to follow one or other strategy is a complex one that must be regularly reviewed and updated.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection (down) Numéro de collection Edition  
  ISSN 0959-3780 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1601  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: