|   | 
Détails
   web
Enregistrements
Auteur Rouyer, T.; Fromentin, J.-M.; Ménard, F.; Cazelles, B.; Briand, K.; Pianet, R.; Planque, B.; Stenseth, N.C.
Titre Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries Type Article scientifique
Année 2008 Publication Revue Abrégée Pnas
Volume 105 Numéro 14 Pages 5420-5425
Mots-Clés Atlantic tuna; North Atlantic Oscillation; time-series analysis
Résumé The patterns of variations in fisheries time series are known to result from a complex combination of species and fisheries dynamics all coupled with environmental forcing (including climate, trophic interactions, etc.). Disentangling the relative effects of these factors has been a major goal of fisheries science for both conceptual and management reasons. By examining the variability of 169 tuna and billfish time series of catch and catch per unit effort (CPUE) throughout the Atlantic as well as their linkage to the North Atlantic Oscillation (NAO), we find that the importance of these factors differed according to the spatial scale. At the scale of the entire Atlantic the patterns of variations are primarily spatially structured, whereas at a more regional scale the patterns of variations were primarily related to the fishing gear. Furthermore, the NAO appeared to also structure the patterns of variations of tuna time series, especially over the North Atlantic. We conclude that the patterns of variations in fisheries time series of tuna and billfish only poorly reflect the underlying dynamics of these fish populations; they appear to be shaped by several successive embedded processes, each interacting with each other. Our results emphasize the necessity for scientific data when investigating the population dynamics of large pelagic fishes, because CPUE fluctuations are not directly attributable to change in species' abundance.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0027-8424, 1091-6490 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection (down) 1669
Lien permanent pour cet enregistrement
 

 
Auteur Olson, R.J.; Young, J.W.; Menard, F.; Potier, M.; Allain, V.; Goni, N.; Logan, J.M.; Galvan-Magana, F.
Titre Bioenergetics, Trophic Ecology, and Niche Separation of Tunas Type Chapitre de livre
Année 2016 Publication Revue Abrégée
Volume Numéro Pages 199-344
Mots-Clés albacore thunnus-alalunga; atlantic bluefin tuna; eastern tropical pacific; fish aggregation devices; gulf-of-mexico; large pelagic fishes; oceanic top predators; predator-prey interactions; satellite archival tags; western indian-ocean
Résumé Tunas are highly specialized predators that have evolved numerous adaptations for a lifestyle that requires large amounts of energy consumption. Here we review our understanding of the bioenergetics and feeding dynamics of tunas on a global scale, with an emphasis on yellowfin, bigeye, skipjack, albacore, and Atlantic bluefin tunas. Food consumption balances bioenergetics expenditures for respiration, growth (including gonad production), specific dynamic action, egestion, and excretion. Tunas feed across the micronekton and some large zooplankton. Some tunas appear to time their life history to take advantage of ephemeral aggregations of crustacean, fish, and molluscan prey. Ontogenetic and spatial diet differences are substantial, and significant interdecadal changes in prey composition have been observed. Diet shifts from larger to smaller prey taxa highlight ecosystem-wide changes in prey availability and diversity and provide implications for changing bioenergetics requirements into the future. Where tunas overlap, we show evidence of niche separation between them; resources are divided largely by differences in diet percentages and size ranges of prey taxa. The lack of long-term data limits the ability to predict impacts of climate change on tuna feeding behaviour. We note the need for systematic collection of feeding data as part of routine monitoring of these species, and we highlight the advantages of using biochemical techniques for broad-scale analyses of trophic relations. We support the continued development of ecosystem models, which all too often lack the regional-specific trophic data needed to adequately investigate climate and fishing impacts.
Adresse
Auteur institutionnel Thèse
Editeur Elsevier Academic Press Inc Lieu de Publication San Diego Éditeur Curry, B.E.
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé Advances in Marine Biology, Vol 74
Volume de collection 74 Numéro de collection Edition
ISSN ISBN 978-0-12-803607-5 Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection (down) 1661
Lien permanent pour cet enregistrement
 

 
Auteur Moreno, G.; Dagorn, L.; Capello, M.; Lopez, J.; Filmalter, T.; Forget, F.; Sancristobal, I.; Holland, K.
Titre Fish aggregating devices (FADs) as scientific platforms Type Article scientifique
Année 2016 Publication Revue Abrégée Fish Res.
Volume 178 Numéro Pages 122-129
Mots-Clés abundance; Acoustic tags; association; behavior; Echo-sounder buoy; fad; Fishing technology; indian-ocean; pacific-ocean; Pelagic ecosystem; pelagic fish; purse-seine fisheries; thunnus-albacares; Tropical tuna; Tuna; western; yellowfin
Résumé Fish aggregating devices (FADs) are floating objects used by fishers to aggregate pelagic fish such as tunas, and enhance the catch of these species. Because this is so important for tuna fisheries, nearly 100,000 FADs are deployed by fishers every year in the world's tropical oceans. Fishers use geo-locating buoys to track and maintain these FADs by visiting them regularly, reinforcing them if they are weak or replacing them. Many of these buoys are now equipped with echo-sounders in order to provide remote information on the aggregated biomass. FADs are currently only used for fishing purposes but they can also serve scientific objectives. In this paper, we investigate the potential of these data for improving our knowledge on the ecology of tunas and other pelagic animals as well as to obtain fishery-independent indices of distribution and abundance. These FADs also represent platforms for scientists to deploy scientific instruments, such as electronic tag receivers, cameras and hydrophones. Because FADs naturally aggregate several pelagic species other than tuna, these instrumented FADs can be a unique opportunity to observe pelagic ecosystem dynamics that are not possible from conventional research vessels. The amount of cost-effective data that they can provide would make a significant contribution to the scientific understanding of pelagic ecosystems. This information is vital for improved conservation and management of pelagic fisheries. (C) 2015 Elsevier B.V. All rights reserved.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0165-7836 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection (down) 1650
Lien permanent pour cet enregistrement
 

 
Auteur Dalongeville, A.; Andrello, M.; Mouillot, D.; Albouy, C.; Manel, S.
Titre Ecological traits shape genetic diversity patterns across the Mediterranean Sea: a quantitative review on fishes Type Article scientifique
Année 2016 Publication Revue Abrégée J. Biogeogr.
Volume 43 Numéro 4 Pages 845-857
Mots-Clés atlantic bluefin tuna; bass dicentrarchus-labrax; climate-change; cod gadus-morhua; ecological traits; effective population-size; genetic diversity; gilthead sea; life-history traits; marine fishes; marine populations; Mediterranean Sea; microsatellite markers; microsatellites; mitochondrial; mitochondrial DNA; molecular markers; population genetics
Résumé AimWe set out to identify the determinants of the variation in genetic diversity among fish species and test whether multi-species genetic diversity is randomly distributed in space. LocationMediterranean Sea. MethodsWe collected genetic diversity data from 39 published studies on Mediterranean fishes (31 species) along with the spatial coordinates of the sampling sites. We focused on microsatellite heterozygosity (151 data points) and mitochondrial haplotype diversity (201 data points). We used linear regressions to link genetic diversity and 11 ecological traits. We also tested for spatial autocorrelation and trends in the residuals. ResultsAmong-species variation in microsatellite heterozygosity was explained by three ecological traits: vertical distribution, migration type and body length. Variation in mitochondrial haplotype diversity was also explained by vertical distribution and migration type, and by reproductive strategy (semelparity). However, vertical distribution and migration type showed opposite effects on microsatellites and mitochondrial diversity. After accounting for the effects of ecological traits, no spatial pattern was detected, except for one of the species considered. Main conclusionsEcological factors explain an important proportion of the among-species genetic diversity. These results suggest that life history strategies of the species influence the variation of microsatellite diversity indirectly through their effect on effective population size, while the spatial variations of genetic diversity seem to be too complex to be identified in our analysis. We found very different effects of traits on mitochondrial and nuclear DNA diversity, which can be explained by the specificities of mitochondrial DNA (absence of recombination, maternal inheritance and non-neutrality).
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0305-0270 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection (down) 1627
Lien permanent pour cet enregistrement
 

 
Auteur Dueri, S.; Guillotreau, P.; Jiménez-Toribio, R.; Oliveros-Ramos, R.; Bopp, L.; Maury, O.
Titre Food security or economic profitability? Projecting the effects of climate and socioeconomic changes on global skipjack tuna fisheries under three management strategies Type Article scientifique
Année 2016 Publication Revue Abrégée Global Environmental Change
Volume 41 Numéro Pages 1-12
Mots-Clés Bioeconomic model; climate change; fishery management; Mey; Msy; Skipjack tuna
Résumé We investigate the interactions between anthropogenic climate change, socioeconomic developments and tuna fishery management strategies. For this purpose, we use the APECOSM-E model to map the effects of climate change and commercial fishing on the distribution of skipjack tuna biomass in the three oceans, combined with a new bioeconomic module representing the rent or profit of skipjack fisheries. For forcing, we use Representative Concentration Pathway (RCP) 8.5, the highest emission scenario for greenhouse gas concentrations presented in the IPCC’s Fifth Assessment Report (AR5), and the IPCC Socioeconomic Shared Pathway (SSP) 3, which is characterized by low economic development and a strong increase in the world population. We first investigate the impact of climate change on regional skipjack abundance, catches and profits in three oceans (Atlantic, Indian and Pacific) in 2010, 2050 and 2095. We then study the effects of three management strategies (maximum sustainable yield or MSY, maximum economic yield or MEY, and zero rent or ZR) on the future distribution of fishing fleets between oceans and on global economic rent. Our model projections for 2050 and 2095 show an increase in global skipjack biomass compared to 2010 and major changes in its distribution, impacting local and regional fishing efforts. The Pacific Ocean will continue to dominate the skipjack market. In our modeling of management strategies, the currently predominant MSY strategy would have been unprofitable in 2010, due to a decreased catch per unit effort (CPUE). In the future, however, technological developments should increase fishing efficiency and make MSY profitable. In all the scenarios, a MEY strategy is more profitable than MSY but leads to the lowest catches and the highest prices. This raises ethical questions in a world where food security may become a top priority. In the scenarios where MSY generates an economic loss (e.g. 2010), a ZR strategy allows global stocks to be exploited at high but still profitable levels. Conversely, in the scenarios where MSY is profitable, (e.g. 2095) ZR leads to overfishing and smaller global catches. We conclude that the most appropriate management strategy at any time is likely to change as environmental and socioeconomic conditions evolve. The decision to follow one or other strategy is a complex one that must be regularly reviewed and updated.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0959-3780 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection (down) 1601
Lien permanent pour cet enregistrement