|   | 
Détails
   web
Enregistrements
Auteur Mullon, C.; Guillotreau, P.; Galbraith, E.D.; Fortilus, J.; Chaboud, C.; Bopp, L.; Aumont, O.; Kaplan, D.
Titre Exploring future scenarios for the global supply chain of tuna Type Article scientifique
Année 2017 Publication Revue Abrégée Deep Sea Research Part II: Topical Studies in Oceanography
Volume 140 Numéro Pages 251-267
Mots-Clés climate change; Global supply chain; marine protected area; Scenarios; Tuna
Résumé The abundance of tuna, an important top predator that ranges throughout tropical and subtropical oceans, is now largely determined by fishing activity. Fishing activity, in turn, is determined by the interaction of fish availability, fishing capacity, fishing costs and global markets for tuna products. In the face of overfishing, the continued sustainable supply of tuna is likely to require improved global governance, that would benefit from modeling frameworks capable of integrating market forces with the availability of fish in order to consider alternative future projections. Here we describe such a modeling framework, in which we develop several simple, contrasting scenarios for the development of the tuna supply chain in order to illustrate the utility of the approach for global evaluation of management strategies for tuna and other complex, stock-structured fisheries. The model includes multiple national and multi-national fishing fleets, canneries and fresh/frozen markets, and connects these to global consumers using a network of flows. The model is calibrated using recent data on fish catch, cannery and fresh/frozen production, and consumption. Scenarios explore the control on future outcomes in the global tuna fishery by representing, in a simple way, the effects of (1) climate change, (2) changes in the global demand for tuna, and (3) changes in the access to fishing grounds (marine reserves). The results emphasize the potential importance of increasing demand in provoking a global collapse, and suggest that controlling tuna production by limiting technical efficiency is a potential countermeasure. Finally we discuss the outcomes in terms of potential extensions of the scenario approach allowed by this global network model of the tuna supply chain.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN (up) 0967-0645 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2098
Lien permanent pour cet enregistrement
 

 
Auteur Jaquemet, S.; Ternon, J.-F.; Kaehler, S.; Thiebot, J.B.; Dyer, B.; Bemanaja, E.; Marteau, C.; Le Corre, M.
Titre Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel Type Article scientifique
Année 2014 Publication Revue Abrégée Deep-Sea Research Part II.Topical Studies in Oceanography
Volume 100 Numéro No spécial Pages 200-211
Mots-Clés Foraging habitats; Frigatebird; Marine productivity; Mesoscale eddies; Red-footed booby; Sooty tern; Tropical marine predators; Tuna; Western Indian Ocean
Résumé The Mozambique Channel (western Indian Ocean) is a dynamic environment characterised by strong mesoscale features, which influence all biological components of the pelagic ecosystem. We investigated the distribution, abundance and feeding behaviour of seabirds in the Mozambique Channel in relation to physical and biological environmental variables, with a specific interest in mesoscale features. Seabird censuses were conducted in summer and winter during 7 cruises in the southern and northern Mozambique Channel. Tropical species accounted for 49% of the 37 species identified and 97% of the individuals, and species from the sub-Antarctic region constituted 30% of the identifications. The typically tropical sooty tern (Onychoprion fuscata) was the dominant species during all cruises, and overall accounted for 74% of the species observations and 85% of counted birds. Outputs of Generalised Linear Models at the scale of the Mozambique Channel suggested that higher densities of flying and feeding birds occurred in areas with lower sea surface temperatures and lower surface chlorophyll a concentrations. Most of the flocks of feeding birds did not associate with surface schools of fish or marine mammals, but when they did, these flocks were larger, especially when associated with tuna. While tropical species seemed to favour cyclonic eddies, frontal and divergence zones, non-tropical species were more frequently recorded over shelf waters. Sooty terns foraged preferentially in cyclonic eddies where zooplankton, micronelcton and tuna schools were abundant. Among other major tropical species, frigatebirds (Fregata spp.) predominated in frontal zones between eddies, where tuna schools also frequently occurred and where geostrophic currents were the strongest. Red-footed boobies (Sula sub) concentrated in divergence zones characterised by low sea level anomalies, low geostrophic currents, and high zooplanlcton biomass close to the surface. Our results highlight the importance of mescoscale features in structuring the tropical seabird community in the Mozambique Channel, in addition to segregating tropical and non-tropical species. The mechanisms underlying the segregation of tropical seabirds seem to partially differ from that of other tropical regions, and this may be a consequence of the strong local mesoscale activity, affecting prey size and availability schemes. Beyond characterising the foraging habitats of the seabird community of the Mozambique Channel, this study highlights the importance of this region as a hot spot for seabirds; especially the southern part, where several endangered sub-Antarctic species over-winter.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur Barlow, R.; Marsac, F.; Ternon, J.-F.; Roberts, M.
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN (up) 0967-0645 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 363
Lien permanent pour cet enregistrement
 

 
Auteur NIEBLAS, A.-E.; DEMARCQ, H.; DRUSHKA, K.; SLOYAN, B.; BONHOMMEAU, S.
Titre Front variability and surface ocean features of the presumed southern bluefin tuna spawning grounds in the tropical southeast Indian Ocean Type Article scientifique
Année 2014 Publication Revue Abrégée Deep-sea Research Part II-topical Studies In Oceanography
Volume 107 Numéro Pages 64-76
Mots-Clés Front detection index; Indo-Australian region; Oceanic fronts; Southern bluefin tuna Thunnus maccoyii; Spawning grounds (10 degrees S-20 degrees S 105 degrees E-125 degrees E); Tropical southeast Indian Ocean
Résumé The southern bluefin tuna (SBT, Thunnus maccoyii) is an ecologically and economically valuable fish. However, surprisingly little is known about its critical early life history, a period when mortality is several orders of magnitude higher than at any other life stage, and when larvae are highly sensitive to environmental conditions. Ocean fronts can be important in creating favourable spawning conditions, as they are a convergence of water masses with different properties that can concentrate planktonic particles and lead to enhanced productivity. In this study, we examine the front activity within the only region where SBT have been observed to spawn: the tropical southeast Indian Ocean between Indonesia and Australia (10 degrees S-20 degrees S, 105 degrees E-125 degrees E). We investigate front activity and its relationship to ocean dynamics and surface features of the region. Results are also presented for the entire Indian Ocean (30 degrees N-45 degrees S, 20 degrees E-140 degrees E) to provide a background context. We use an extension of the Cayula and Cornillon algorithm to detect ocean fronts from satellite images of sea surface temperature (SST) and chlorophyll-a concentration (chl-a). Front occurrence represents the probability of occurrence of a front at each pixel of an image. Front intensity represents the magnitude of the difference between the two water masses that make up a front. Relative to the rest of the Indian Ocean, both SST and chl-a fronts in the offshore spawning region are persistent in occurrence and weak in intensity. Front occurrence and intensity along the Australian coast are high, with persistent and intense fronts found along the northwest and west coasts. Fronts in the tropical southeast Indian Ocean are shown to have strong annual variability and some moderate interannual variability. SST front occurrence is found to lead the Southern Oscillation Index by one year, potentially linked to warming and wind anomalies in the Indian Ocean. The surface ocean characteristics of the offshore SBT spawning region are found to be particularly stable compared to the rest of the Indian Ocean in terms of stable SST, low eddy kinetic energy, i.e., low mesoscale eddy activity, and low chl-a. However, this region has high front occurrence, but low front intensity of both SST and chl-a fronts. The potential impact of these oceanic features for SBT spawning is discussed.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN (up) 0967-0645 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1131
Lien permanent pour cet enregistrement
 

 
Auteur Navarro, J.; Saez-Liante, R.; Albo-Puigserver, M.; Coll, M.; Palomera, I.
Titre Feeding strategies and ecological roles of three predatory pelagic fish in the western Mediterranean Sea Type Article scientifique
Année 2017 Publication Revue Abrégée Deep-Sea Res. Part II-Top. Stud. Oceanogr.
Volume 140 Numéro Pages 9-17
Mots-Clés diet; ecosystem structure; iberian peninsula; indian-ocean; isotope ratios; Marine predators; Pelagic ecosystem; Stable isotopes; stable-isotopes; Stomach contents; swordfish; top predators; Trophic ecology; trophic level; xiphias-gladius; Yellowfin tuna
Résumé Knowing the feeding ecology of marine predators is pivotal to developing an understanding of their ecological role in the ecosystem and determining the trophic relationships between them. Despite the ecological importance of predatory pelagic fish species, research on these species in the Mediterranean Sea is limited. Here, by combining analyses of stomach contents and stable isotope values, we examined the feeding strategies of swordfish, Xiphias gladius, little tunny, Euthynnus alletteratus and Atlantic bonito, Sarda sarda, in the western Mediterranean Sea. We also compared the trophic niche and trophic level of these species with published information of other sympatric pelagic predators present in the ecosystem. Results indicated that, although the diet of the three species was composed mainly by fin-fish species, a clear segregation in their main feeding strategies was found. Swordfish showed a generalist diet including demersal species such as blue whiting, Micromesistius poutassou, and European hake, Merluccius merluccius, and pelagic fin-fish such as barracudina species (Arctozenus risso and Lestidiops jayakari) or small pelagic fish species. Little tunny and Atlantic bonito were segregated isotopically between them and showed a diet basically composed of anchovy, Engraulis encrasicolus, and round sardinella, Sardinella aurita, and sardines, Sardina pilchardus, respectively. This trophic segregation, in addition to potential segregation by depth, is likely a mechanism that allows their potential coexistence within the same pelagic habitat. When the trophic position of these three predatory pelagic fish species is compared with other pelagic predators such as bluefin tuna, Thunnus thynnus, and dolphinfish, Coryphaena hippurus, present in the western Mediterranean Sea, we found that they show similar intermediate trophic position in the ecosystem. In conclusion, the combined stomach and isotopic results highlight, especially for little tunny and Atlantic bonito, the trophic importance of Clupeoid species in their diet. In addition, the importance of demersal resources for swordfish provides evidence for the pelagic-demersal coupling of the ecosystem and the need to manage marine resources in an integrated way. (C) 2016 Elsevier Ltd. All rights reserved.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN (up) 0967-0645 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2175
Lien permanent pour cet enregistrement
 

 
Auteur Lopez, J.; Moreno, G.; Lennert-Cody, C.; Maunder, M.; Sancristobal, I.; Caballero, A.; Dagorn, L.
Titre Environmental preferences of tuna and non-tuna species associated with drifting fish aggregating devices (DFADs) in the Atlantic Ocean, ascertained through fishers' echo-sounder buoys Type Article scientifique
Année 2017 Publication Revue Abrégée Deep-Sea Res. Part II-Top. Stud. Oceanogr.
Volume 140 Numéro Pages 127-138
Mots-Clés behavior; catch rates; Echo-sounder buoy; Environmental preferences; equatorial atlantic; fad; floating objects; french-polynesia; gamm; habitat; pacific-ocean; Pelagic fish; Purse seine; thunnus-albacares; Tropical tuna; Tuna; western indian-ocean
Résumé Understanding the relationship between environmental variables and pelagic species concentrations and dynamics is helpful to improve fishery management, especially in a changing environment. Drifting fish aggregating device (DFAD)-associated tuna and non-tuna biomass data from the fishers' echo-sounder buoys operating in the Atlantic Ocean have been modelled as functions of oceanographic (Sea Surface Temperature, Chlorophyll-a, Salinity, Sea Level Anomaly, Thermocline depth and gradient, Geostrophic current, Total Current, Depth) and DFAD variables (DFAD speed, bearing and soak time) using Generalized Additive Mixed Models (GAMMs). Biological interaction (presence of non-tuna species at DFADs) was also included in the tuna model, and found to be significant at this time scale. All variables were included in the analyses but only some of them were highly significant, and variable significance differed among fish groups. In general, most of the fish biomass distribution was explained by the ocean productivity and DFAD-variables. Indeed, this study revealed different environmental preferences for tunas and non-tuna species and suggested the existence of active habitat selection. This improved assessment of environmental and DFAD effects on tuna and non-tuna catchability in the purse seine tuna fishery will contribute to transfer of better scientific advice to regional tuna commissions for the management and conservation of exploited resources.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN (up) 0967-0645 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2177
Lien permanent pour cet enregistrement