bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur Travassos Tolotti, M.; Filmalter, J.D.; Bach, P.; Travassos, P.; Seret, B.; Dagorn, L. url  doi
openurl 
  Titre Banning is not enough: The complexities of oceanic shark management by tuna regional fisheries management organizations Type Article scientifique
  Année 2015 Publication Revue Abrégée (up) Global Ecology and Conservation  
  Volume 4 Numéro Pages 1-7  
  Mots-Clés Bycatch; conservation; Fin trade; Pelagic shark; Tuna fisheries  
  Résumé Recently, declining populations of several pelagic shark species have led to global conservation concerns surrounding this group. As a result, a series of species-specific banning measures have been implemented by Regional Fishery Management Organizations (RFMOs) in charge of tuna fisheries, which include retention bans, finning bans and trading bans. There are both positive and negative aspects to most management measures, but generally, the positive aspects outweigh the negatives, ensuring the measure is beneficial to the resource and its users in the long term. Banning measures are a good first step towards the conservation of pelagic shark species, especially since they improve conservation awareness among fishers, managers and the public. Measures that impose total bans, however, can lead to negative impacts that may jeopardize the populations they were intended to protect. The majority of pelagic shark catches are incidental and most sharks die before they reach the vessel or after they are released. The legislation set out by RFMOs only prevents retention but not the actual capture or the mortality that may occur as a result. Managers should be fully aware that the development and implementation of mitigation measures are critical for a more effective conservation strategy.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 2351-9894 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1498  
Lien permanent pour cet enregistrement
 

 
Auteur Dueri, S.; Guillotreau, P.; Jiménez-Toribio, R.; Oliveros-Ramos, R.; Bopp, L.; Maury, O. url  doi
openurl 
  Titre Food security or economic profitability? Projecting the effects of climate and socioeconomic changes on global skipjack tuna fisheries under three management strategies Type Article scientifique
  Année 2016 Publication Revue Abrégée (up) Global Environmental Change  
  Volume 41 Numéro Pages 1-12  
  Mots-Clés Bioeconomic model; climate change; fishery management; Mey; Msy; Skipjack tuna  
  Résumé We investigate the interactions between anthropogenic climate change, socioeconomic developments and tuna fishery management strategies. For this purpose, we use the APECOSM-E model to map the effects of climate change and commercial fishing on the distribution of skipjack tuna biomass in the three oceans, combined with a new bioeconomic module representing the rent or profit of skipjack fisheries. For forcing, we use Representative Concentration Pathway (RCP) 8.5, the highest emission scenario for greenhouse gas concentrations presented in the IPCC’s Fifth Assessment Report (AR5), and the IPCC Socioeconomic Shared Pathway (SSP) 3, which is characterized by low economic development and a strong increase in the world population. We first investigate the impact of climate change on regional skipjack abundance, catches and profits in three oceans (Atlantic, Indian and Pacific) in 2010, 2050 and 2095. We then study the effects of three management strategies (maximum sustainable yield or MSY, maximum economic yield or MEY, and zero rent or ZR) on the future distribution of fishing fleets between oceans and on global economic rent. Our model projections for 2050 and 2095 show an increase in global skipjack biomass compared to 2010 and major changes in its distribution, impacting local and regional fishing efforts. The Pacific Ocean will continue to dominate the skipjack market. In our modeling of management strategies, the currently predominant MSY strategy would have been unprofitable in 2010, due to a decreased catch per unit effort (CPUE). In the future, however, technological developments should increase fishing efficiency and make MSY profitable. In all the scenarios, a MEY strategy is more profitable than MSY but leads to the lowest catches and the highest prices. This raises ethical questions in a world where food security may become a top priority. In the scenarios where MSY generates an economic loss (e.g. 2010), a ZR strategy allows global stocks to be exploited at high but still profitable levels. Conversely, in the scenarios where MSY is profitable, (e.g. 2095) ZR leads to overfishing and smaller global catches. We conclude that the most appropriate management strategy at any time is likely to change as environmental and socioeconomic conditions evolve. The decision to follow one or other strategy is a complex one that must be regularly reviewed and updated.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0959-3780 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1601  
Lien permanent pour cet enregistrement
 

 
Auteur Ruiz, J.; Batty, A.; Chavance, P.; McElderry, H.; Restrepo, V.; Sharples, P.; Santos, J.; Urtizberea, A. url  doi
openurl 
  Titre Electronic monitoring trials on in the tropical tuna purse-seine fishery Type Article scientifique
  Année 2015 Publication Revue Abrégée (up) ICES J. Mar. Sci.  
  Volume 72 Numéro 4 Pages 1201-1213  
  Mots-Clés Bycatch; catch composition; data collection; electronic monitoring system; observers; Purse seining; Tropical tuna  
  Résumé The difficulty of ensuring adequate statistical coverage of whole fleets is a challenge for the implementation of observer programmes and may reduce the usefulness of the data they obtain for management purposes. This makes it necessary to find cost-effective alternatives. Electronic monitoring (EM) systems are being used in some fisheries as an alternative or a complement to human observers. The objective of this study was to test the use and reliability of EM on the tropical tuna purse-seine fishery. To achieve this objective, seven trips of tuna purse seiners operating in the three Oceans were closely monitored to compare the information provided by EM and on-board observers to determine if EM can reliably document fishing effort, set type, tuna catch, and bycatch. Total tuna catch per set was not significantly different between EM and observer datasets; however, regarding species composition, only main species matched between EM and observers. Success on set-type identification using EM varied between 98.3 and 56.3%, depending on the camera placement. Overall, bycatch species were underestimated by EM, but large bodied species, such as billfishes, were well documented. The analyses in this study showed that EM can be used to determine the fishing effort (number of sets) and total tuna catch as reliably as observers can. Set-type identification also had very promising results, but indicated that refinement of the methods is still needed. To be fully comparable with observer data, improvements for accurately estimating the bycatch will need to be developed in the application and use of the EM system. Operational aspects that need to be improved for an EM programme to be implemented include standardizing installation and on-board catch handling methodology as well as improvements in video technology deployment.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue en Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1054-3139, 1095-9289 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1335  
Lien permanent pour cet enregistrement
 

 
Auteur Escalle, L.; Gaertner, D.; Chavance, P.; Delgado de Molina, A.; Ariz, J.; Mérigot, B. doi  openurl
  Titre Forecasted consequences of simulated FAD moratoria in the Atlantic and Indian Oceans on catches and bycatches Type Article scientifique
  Année 2017 Publication Revue Abrégée (up) ICES J. Mar. Sci.  
  Volume 74 Numéro 3 Pages 780-792  
  Mots-Clés area; Bycatch; ecosystem approach to fisheries; fish aggregation device; management; Megafauna; Monte Carlo simulations; Purse-seine fishery; time; time-area restriction; tropical tuna purse-seine fishery; Tuna  
  Résumé Given the increasingly extensive use of drifting fish aggregation devices (FADs) by the purse-seine fisheries targeting tropical tunas, fishing effort restrictions have been introduced to manage tropical tuna stocks. However, these measures are focused on the protection of juvenile tunas and do not take account of the potential impact on bycatch or associated megafauna (whales and whale sharks). An iterative “fishing-day” Monte Carlo simulation model was developed to investigate the consequences on tropical tunas and bycatch of introducing extensive area 6-month moratoria on FAD activities. The model allowed for variability in a range of plausible values of the parameters characterizing the fishing operations conducted by European purse-seiners in the eastern tropical Atlantic and western Indian Oceans for the period 2005-2014. Monte Carlo simulations, using probabilities based on these fishery data, were carried out for the French and Spanish fishing fleets separately to account for differences in fishing strategies. The models predicted a decrease in FAD sets and an increase in free school sets. As a consequence, the catch of small tuna (<10 kg) decreased while the catch of large tuna (>= 10 kg) increased, leading to an overall increase in tuna catch of 100-200 tons/year/vessel in the Atlantic Ocean, and a decrease of 400-1500 tons/year/vessel in the Indian Ocean. The bycatch decreased in the Indian Ocean, while in the Atlantic Ocean billfishes, turtles and chondrichthyans bycatch increased slightly and other bony fishes decreased. Because fishing practices were modified, whale and whale shark associated sets increased slightly in the Indian Ocean.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1054-3139 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2105  
Lien permanent pour cet enregistrement
 

 
Auteur Kaplan, D.; Chassot, E.; Amande, J.M.; Dueri, S.; Demarcq, H.; Dagorn, L.; Fonteneau, A. url  doi
openurl 
  Titre Spatial management of Indian Ocean tropical tuna fisheries: potential and perspectives Type Article scientifique
  Année 2014 Publication Revue Abrégée (up) Ices Journal of Marine Science  
  Volume 71 Numéro 7 Pages 1728-1749  
  Mots-Clés Bycatch; conservation; Indian Ocean; Marine protected areas (MPAs); pelagic; spatial management of fisheries; tropical tuna fisheries  
  Résumé Effective use of spatial management in the pelagic realm presents special challenges due to high fish and fisher mobility, limited knowledge and significant governance challenges. The tropical Indian Ocean provides an ideal case study for testing our ability to apply existing data sources to assessing impacts of spatial management on tuna fisheries because of several recent controversial spatial closures. We review the scientific underpinnings of pelagic MPA effects, spatio-temporal patterns of Indian Ocean tuna catch, by catch and fish movements, and the consequences of these for the efficacy of spatial management for Indian Ocean tropical tuna fisheries. The tropical Indian Ocean is characterized by strong environmental fluctuations, regular seasonal variability in catch, large observed tuna displacement distances, relatively uniform catch-per-unit-effort and bycatch rates over space, and high fisher mobility, all of which suggest significant variability and movement in tropical tuna fisheries that are simply not well adapted to static spatial closures. One possible exception to this overall conclusion would be a large time/area closure east of Somalia. If closed for a significant fraction of the year it could reduce purse-seine bycatch and juvenile tuna catch. Dynamic closures following fish migratory patterns are possible, but more focused information on fish movements will be needed for effective implementation. Fortunately, several recent improvements in conventional fishery management and reporting will likely enhance our ability to evaluate spatial and non-spatial management options in the near future, particularly as pertaining to bycatch species.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1054-3139 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1199  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: