bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur (up) Annasawmy, P.; Ternon, J.F.; Marsac, F.; Cherel, Y.; Behagle, N.; Roudaut, G.; Lebourges-Dhaussy, A.; Demarcq, H.; Moloney, C.L.; Jaquemet, S.; Menard, F. doi  openurl
  Titre Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes Type Article scientifique
  Année 2018 Publication Revue Abrégée Deep-Sea Res. Part I-Oceanogr. Res. Pap.  
  Volume 138 Numéro Pages 85-97  
  Mots-Clés Diel vertical migration; East African Coastal province; equatorial atlantic; feeding ecology; Indian South Subtropical Gyre; large pelagic fishes; mesopelagic fishes; mesoscale features; Micronekton; mozambique channel; myctophid fishes; north-atlantic ocean; respiratory carbon; Trophic level; vertical-distribution  
  Résumé Spatial distribution, community composition and trophic roles of micronekton (crustaceans, fishes and squids) were investigated in the Indian South Subtropical Gyre (ISSG) province and the East African Coastal province (EAFR), by combining acoustic surveys, mid-water trawls and stable isotope analyses from scientific cruises conducted in 2009 and 2010. Mesopelagic micronekton performed diel vertical migrations in both provinces, from deep (400-740 m) to surface (0-200 m) layers at dusk and in the opposite direction at dawn, with some species migrating below 740 m. The EAFR province was more dynamic than the oligotrophic ISSG province, with enhanced eddy activity and enhanced yearly productivity. The active enrichment mechanisms in the EAFR, in terms of available primary production, led to high micronekton acoustic density (as a proxy of micronekton abundance) and large micronekton weight and abundance estimates from trawl data. Particulate organic matter in the EAFR exhibited greater enrichment in C-13 and N-15 compared to the ISSG and, consequently, tissues of selected micronekton organisms in the EAFR were more enriched in N-15 (higher delta N-15 values). In both provinces, micronekton encompassed a wide range of isotopic niches, with large overlaps between species. Micronekton and swordfish in the EAFR had an overlapping range of delta N-15 values, contrasting with the ISSG province where swordfish were two trophic levels higher than the sampled micronekton. Our results provide some evidence that the combined action of riverine input and the dynamics of eddies might influence productivity in the EAFR, and hence the abundance of micronekton and the enrichment of tissues in N-15, compared to the oligotrophic ISSG province.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0967-0637 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2431  
Lien permanent pour cet enregistrement
 

 
Auteur (up) Blanchard, F.; Chaboud, C.; Thebaud, O. doi  openurl
  Titre Back to the future: A retrospective assessment of model-based scenarios for the management of the shrimp fishery in French Guiana facing global change Type Article scientifique
  Année Publication Revue Abrégée Nat. Resour. Model.  
  Volume Numéro Pages e12232  
  Mots-Clés bio-economic model; climate change; numerical simulation; retrospective analysis; seafood market; tropical shrimp fishery; uncertainty  
  Résumé While the number of models dedicated to predicting the consequences of alternative resource management strategies has increased, instances in which authors look back at past predictions to learn from discrepancies between these and observed developments are scarce. In the past decades, the French Guiana shrimp fishery has experienced shrimp market globalization and decreasing levels of shrimp recruitment due to environmental changes. In 2006, a bio-economic model of this fishery was developed to simulate its possible responses to economic and environmental scenarios up to 2016. Here, we compare here these predictions to the observed trajectories. While the number of active vessels corresponds to that which was predicted, the estimated shrimp stock does not. Important driving factors had not been anticipated, including a general strike, natural disasters, and the end of the global financial crisis. These results show the importance of participative approaches involving stakeholders in the co-construction and shared representation of scenarios. Recommendations for resource managers Effective fisheries resources management and a fortiori, the capacity of the fisheries to adapt to global change, requires understanding of both ecological and economics dynamics. The temporal trajectory of the trawling shrimp fisheries has been well monitored, and the decline of both stock and fleet is understood regarding ecological and economic changes: Changes in the environmental conditions of shrimp recruitment, and oil price increase and selling price decrease. However, our bio-economic modeling work showed that, even with a good understanding of the dynamics explaining past trajectories, unpredictable events (strike, natural disasters horizontal ellipsis ) have acted as other key driving factors altering the capacity of the model to represent possible futures. These results led us to recommend a better integration of the expertise of social and political scientists in developing models of bio-economic systems to increase the quality of scenario predictions, and to argue for more participative approaches involving the stakeholders.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0890-8575 ISBN Médium  
  Région Expédition Conférence  
  Notes WOS:000476048000001 Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2618  
Lien permanent pour cet enregistrement
 

 
Auteur (up) Bodin, N.; Chassot, E.; Sardenne, F.; Zudaire, I.; Grande, M.; Dhurmeea, Z.; Murua, H.; Barde, J. url  doi
openurl 
  Titre Ecological data for western Indian Ocean tuna Type Article scientifique
  Année 2018 Publication Revue Abrégée Ecology  
  Volume 99 Numéro 5 Pages 1245-1245  
  Mots-Clés energetics; fatty acids; lipids; morphometrics; multi-tissues; proteins; stable isotopes; trophic ecology; tropical marine ecosystems; tuna fisheries  
  Résumé Tuna are marine apex predators that inhabit the tropical and sub-tropical waters of the Indian Ocean where they support socially and economically important fisheries. Key component of pelagic communities, tuna are bioindicator species of anthropogenic and climate-induced changes through modifications of the structure and related energy-flow of food webs and ecosystems. The IndianEcoTuna dataset provides a panel of ecological tracers measured in four soft tissues (white muscle, red muscle, liver, gonads) from 1,364 individuals of four species, i.e., the albacore (ALB, Thunnus alalunga), the bigeye (BET, T. obesus), the skipjack (SKJ, Katsuwomus pelamis), and the yellowfin (YFT, T. albacares), collected throughout the western Indian Ocean from 2009 to 2015. Sampling was carried out during routine monitoring programs, at sea by observers onboard professional vessels or at landing. For each record, the type of fishing gear, the conservation mode, as well as the fishing date and catch location are provided. Individuals were sampled to span a wide range of body sizes: 565 ALB with fork length from 58 to 118 cm, 155 BET from 29.5 to 173 cm, 304 SKJ from 30 to 74 cm, and 340 YFT from 29 to 171.5 cm. The IndianEcoTuna dataset combines: (1) 9,512 records of carbon and nitrogen stable isotopes (percent element weights, δ13C and δ15N values) in 1,185 fish, (2) 887 concentrations of total proteins in 242 fish, (3) 8,356 concentrations of total lipids and three lipid classes (triacylglycerols TAG; phospholipids PL; sterols ST) in 695 fish, and (4) 1,150 and 1,033 profiles of neutral and polar fatty acids in 397 and 342 fish, respectively. Information on sex and weights of the whole fish, gonads, liver and stomach is provided. Because of the essential trophic role and wide-ranging of tuna in marine systems, and the large panel of tropho-energetic tracers and derived-key quantitative parameters provided (e.g., niche width, trophic position, condition indices), the IndianEcoTuna dataset should be of high interest for global and regional research on marine trophic ecology and food web analysis, as well as on the impacts of anthropogenic changes on Indian Ocean marine ecosystems. There are no copyright restrictions for research and/or teaching purposes. Usage of the dataset must include citation of this Data Paper.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue en Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1939-9170 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2373  
Lien permanent pour cet enregistrement
 

 
Auteur (up) Brochier, T.; Ecoutin, J.M.; de Morais, L.T.; Kaplan, D.M.; Lae, R. doi  openurl
  Titre A multi-agent ecosystem model for studying changes in a tropical estuarine fish assemblage within a marine protected area Type Article scientifique
  Année 2013 Publication Revue Abrégée Aquatic Living Resources  
  Volume 26 Numéro 02 Pages 147-158  
  Mots-Clés ecosystem model; Life history; marine protected area; Spill-over; trophic level; Tropical estuarine fish assemblage; West Africa  
  Résumé As marine protected areas (MPAs) are increasingly being utilised as a tool for fishery management, their impact on the food web needs to be fully understood. However, little is known about the effect of MPAs on fish assemblages, especially in the presence of different life history and ecological traits. Modelling the observed changes in fish population structures may provide a mechanistic understanding of fish assemblage dynamics. In addition, modelling allows a quantitative estimate of MPA spill-over. To achieve this purpose, we adapted an existing ecosystem model, OSMOSE (Object-oriented simulator of marine biodiversity exploitation), to the specific case of the presence of fish with multiple life histories. The adapted model can manage 4 main categories of life history identified in an estuary MPA: fish that (1) spend their entire life cycle locally, (2) are present only as juveniles, (3) enter the area as juveniles and stay permanently except during reproduction periods, which occur outside the estuary, and (4) are present occasionally and for a short time for foraging purposes. To take into account these specific life-history traits, the OSMOSE code was modified. This modelling approach was developed in the context of the Bamboung Bolong MPA, located in a mangrove area in the Sine-Saloum Delta, Senegal. This was the ideal case to develop our approach as there has been scientific monitoring of the fish population structure inside the MPA before fishery closure, providing a reference state, and continuous monitoring since the closure. Ecologically similar species were pooled by trophic traits into 15 groups that represented 97% of the total biomass. Lower trophic levels (LTL) were represented by 6 compartments. The biomass of the model species was calibrated to reproduce the reference situation before fishery closure. Model predictions of fish assemblage changes after fishery closure corresponding to the Bamboung MPA creation scenario were compared to field observations; in most cases the model reproduces observed changes in biomass (at least in direction). We suggest the existence of a “sanctuary effect”, that was not taken into account in the model, this could explain the observed increase in biomass of top predators not reproduced by the model. Finally, the annual MPA fish spill-over was estimated at 11 tons (~33% of the fish biomass) from the model output, mainly due to diffusive effects.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel LL @ pixluser @ collection 298  
Lien permanent pour cet enregistrement
 

 
Auteur (up) Chiarello, M.; Auguet, J.-C.; Bettarel, Y.; Bouvier, C.; Claverie, T.; Graham, N.A.J.; Rieuvilleneuve, F.; Sucre, E.; Bouvier, T.; Villeger, S. doi  openurl
  Titre Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet Type Article scientifique
  Année 2018 Publication Revue Abrégée Microbiome  
  Volume 6 Numéro Pages 147  
  Mots-Clés bacterial communities; divergence; diversity; evolution; insights; life-history; Microbiota; mucus; patterns; Phylogenetic diversity; Phylogenetic signal; Phylosymbiosis; sequence data; Teleost; Tropical; vulnerability  
  Résumé Background: The surface of marine animals is covered by abundant and diversified microbial communities, which have major roles for the health of their host While such microbiomes have been deeply examined in marine invertebrates such as corals and sponges, the microbiomes living on marine vertebrates have received less attention. Specifically, the diversity of these microbiomes, their variability among species, and their drivers are still mostly unknown, especially among the fish species living on coral reefs that contribute to key ecosystem services while they are increasingly affected by human activities. Here, we investigated these knowledge gaps analyzing the skin microbiome of 138 fish individuals belonging to 44 coral reef fish species living in the same area. Results: Prokaryotic communities living on the skin of coral reef fishes are highly diverse, with on average more than 600 OTUs per fish, and differ from planktonic microbes. Skin microbiomes varied between fish individual and species, and interspecific differences were slightly coupled to the phylogenetic affiliation of the host and its ecological traits. Conclusions: These results highlight that coral reef biodiversity is greater than previously appreciated, since the high diversity of macro-organisms supports a highly diversified microbial community. This suggest that beyond the loss of coral reefs-associated macroscopic species, anthropic activities on coral reefs could also lead to a loss of still unexplored host-associated microbial diversity, which urgently needs to be assessed.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 2049-2618 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2421  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: