bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur Donati, G.F.A.; Parravicini, V.; Leprieur, F.; Hagen, O.; Gaboriau, T.; Heine, C.; Kulbicki, M.; Rolland, J.; Salamin, N.; Albouy, C.; Pellissier, L. doi  openurl
  Titre A process-based model supports an association between dispersal and the prevalence of species traits in tropical reef fish assemblages Type Article scientifique
  Année 2019 Publication Revue Abrégée Ecography  
  Volume Numéro Pages  
  Mots-Clés biodiversity; body-size; dispersal; diversification; diversity; extinction rates; genetic-structure; geographic range size; global patterns; latitudinal gradient; mechanistic models; propagule dispersal; reef fish; speciation; traits  
  Résumé Habitat dynamics interacting with species dispersal abilities could generate gradients in species diversity and prevalence of species traits when the latter are associated with species dispersal potential. Using a process-based model of diversification constrained by a dispersal parameter, we simulated the interplay between reef habitat dynamics during the past 140 million years and dispersal, shaping lineage diversification history and assemblage composition globally. The emerging patterns from the simulations were compared to current prevalence of species traits related to dispersal for 6315 tropical reef fish species. We found a significant spatial congruence between the prevalence of simulated low dispersal values and areas with a large proportion of species characterized by small adult body size, narrow home range mobility behaviour, pelagic larval duration shorter than 21 days and diurnal activity. Species characterized by such traits were found predominantly in the Indo-Australian Archipelago and the Caribbean Sea. Furthermore, the frequency distribution of the dispersal parameter was found to match empirical distributions for body size, PLD and home range mobility behaviour. Also, the dispersal parameter in the simulations was associated to diversification rates and resulted in trait frequency matching empirical distributions. Overall, our findings suggest that past habitat dynamics, in conjunction with dispersal processes, influenced diversification in tropical reef fishes, which may explain the present-day geography of species traits.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0906-7590 ISBN Médium  
  Région Expédition Conférence  
  Notes WOS:000487946300001 Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2647  
Lien permanent pour cet enregistrement
 

 
Auteur Lett, C.; Barrier, N.; Bahlali, M. doi  openurl
  Titre Converging approaches for modeling the dispersal of propagules in air and sea Type Article scientifique
  Année 2020 Publication Revue Abrégée Ecol. Model.  
  Volume 415 Numéro Pages 108858  
  Mots-Clés Aerial dispersal; Aquatic dispersal; Atmospheric dispersal; Biophysical model; Eulerian model; Lagrangian model; larval dispersal; long-distance dispersal; Marine dispersal; Oceanic dispersal; particle trajectories; population connectivity; Propagule dispersal; reef fish; schooling behavior; seed dispersal; spatially explicit; terrestrial ecology; understanding recruitment; Wind dispersal  
  Résumé Terrestrial plants seeds, spores and pollen are often dispersed by wind. Likewise, most eggs and larvae of marine organisms are dispersed by oceanic currents. It was historically believed that the spatial scale at which dispersal occurs was orders of magnitude smaller for plants than for fish. However, recent empirical estimates of seed and larval dispersal suggest that these dispersal scales are more alike than previously thought. The modeling approaches used to simulate aerial and aquatic dispersal are also converging. Similar biophysical models are developed, in which outputs of Eulerian models simulating the main physical forcing mechanism (wind or currents) are used as inputs to Lagrangian models that include biological components (such as seed terminal velocity or larval vertical migration). These biophysical models are then used to simulate trajectories of the biological entities (seeds, larvae) in three dimensions. We reflect on these converging trends by first putting them into an historical perspective, and then by comparing the physical and biological processes represented in marine larva vs. terrestrial seed dispersal models, the data used for the models output corroboration, and the tools available to perform simulations. We conclude that this convergence offers the opportunity to bridge the gap between two scientific communities which are currently largely disconnected. More broadly, we also see our comparison across systems as a useful way to strengthen the links between aquatic and terrestrial ecology by sharing knowledge, methods, tools, and concepts.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0304-3800 ISBN Médium  
  Région Expédition Conférence  
  Notes WOS:000501415400006 Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2706  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: