|   | 
Détails
   web
Enregistrements
Auteur Saraux, C.; Van Beveren, E.; Brosset, P.; Queiros, Q.; Bourdeix, J.-H.; Dutto, G.; Gasset, E.; Jac, C.; Bonhommeau, S.; Fromentin, J.-M.
Titre Small pelagic fish dynamics: A review of mechanisms in the Gulf of Lions Type Article scientifique
Année (down) 2019 Publication Revue Abrégée Deep-Sea Res. Part II-Top. Stud. Oceanogr.
Volume 159 Numéro Pages 52-61
Mots-Clés Population dynamics; Zooplankton; anchovy; fisheries; history; forage fish; nw mediterranean sea; el-nino; fluctuations; body condition; Bottom-up; Disease; Exploited species; Top-down; sardine sardinops-sagax; southern benguela
Résumé Around 2008, an ecosystem shift occurred in the Gulf of Lions, highlighted by considerable changes in biomass and fish mean weight of its two main small pelagic fish stocks (European anchovy, Engraulis encrasicolus; European sardine, Sardina pilchardus). Surprisingly these changes did not appear to be mediated by a decrease in fish recruitment rates (which remained high) or by a high fishing pressure (exploitation rates being extremely low). Here, we review the current knowledge on the population's dynamics and its potential causes. We used an integrative ecosystem approach exploring alternative hypotheses, ranging from bottom-up to top-down control, not forgetting epizootic diseases. First, the study of multiple population characteristics highlighted a decrease in body condition for both species as well as an important decrease in size resulting from both a slower growth and a progressive disappearance of older sardines. Interestingly, older sardines were more affected by the decrease in condition than younger ones, another sign of an unbalanced population structure. While top-down control by bluefin tuna or dolphins, emigration and disease were mostly discarded as important drivers, bottom-up control mediated by potential changes in the plankton community appeared to play an important role via a decrease in fish energy income and hence growth, condition and size. Isotopic and stomach content analyses indicated a dietary shift pre- and post-2008 and modeled mesozooplankton abundance was directly linked to fish condition. Despite low energy reserves from 2008 onwards, sardines and anchovies maintained if not increased their reproductive investment, likely altering the life-history trade-off between reproduction and survival and resulting in higher natural mortality. The current worrying situation might thus have resulted from changes in plankton availability/diversity, which remains to be thoroughly investigated together with fish phenotypic plasticity.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0967-0645 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2526
Lien permanent pour cet enregistrement
 

 
Auteur Garrido, M.; Cecchi, P.; Malet, N.; Bec, B.; Torre, F.; Pasqualini, V.
Titre Evaluation of FluoroProbe® performance for the phytoplankton-based assessment of the ecological status of Mediterranean coastal lagoons Type Article scientifique
Année (down) 2019 Publication Revue Abrégée Environ Monit Assess
Volume 191 Numéro 4 Pages 204
Mots-Clés FluoroProbe®; Hplc; Mediterranean coastal lagoons; Monitoring; Phytoplankton
Résumé The European Water Framework Directive and several other legislations worldwide have selected phytoplankton for monitoring the ecological status of surface waters. This assessment is a complicated task in coastal lagoons due to their intrinsic variability, prompting moves to use real-time measurements. Here, we tested the ability of the submersible spectrofluorometer FluoroProbe® to accurately estimate the phytoplankton biomass and to efficiently discriminate spectral groups in Mediterranean coastal lagoons, by using sub-surface water samples (n = 107) collected at Biguglia lagoon (Corsica) in different environmental situations (salinity and trophic state) from March 2012 to December 2014. We compared the estimates of biomass and phytoplankton group composition obtained with the FluoroProbe® (in situ and lab measurements) with the spectrofluorimetrically measured biomass and HPLC-derived quantifications of pigment concentrations. FluoroProbe® provided good estimates of the total phytoplankton biomass (particularly, the lab measurements). The FluoroProbe® data were significantly correlated with the HPLC results, except for the in situ measurements of very weak concentrations of blue-green and red algae. Our findings indicate that factory-calibrated FluoroProbe® is an efficient and easy-to-use real-time phytoplankton monitoring tool in coastal lagoons, especially as an early warning system for the detection of potentially harmful algal blooms. Practical instructions dedicated to non-specialist field operators are provided. A simple and efficient method for discarding in situ measurement outliers is also proposed.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1573-2959 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2527
Lien permanent pour cet enregistrement
 

 
Auteur Tessier, A.; Blin, C.; Cottet, M.; Kue, K.; Panfili, J.; Chanudet, V.; Descloux, S.; Guillard, J.
Titre Life history traits of the exploited Nile Tilapia (Oreochromis niloticus – Cichlidae) in a subtropical reservoir (Lao PDR) Type Article scientifique
Année (down) 2019 Publication Revue Abrégée Cybium
Volume 43 Numéro 1 Pages 71-82
Mots-Clés age-determination; community; fish; Fisheries; growth; l.; Man-made Lake; man-made lakes; nam theun 2; Otolith; perciformes; phytoplankton; population; South-East Asia
Résumé Biological traits of Oreochromis niloticus were studied in order to identify potential differences between the population of the Nam Theun 2 Reservoir and other populations in Asia and in Africa. The study also aimed to characterize the demographic structure of the exploited population by fisheries in the reservoir. Toluidine-stained transverse section of otoliths from 322 specimens, collected between November 2015 and January 2017, were analysed to identify the periodicity of annulus formation and to age individuals. Length, weight, sex and sexual maturity stage were recorded. Life history traits were characterized by length-weight and length age relationships. The periodicity of annulus formation was annual, with complete formation of the translucent zone at the beginning of the warm and wet season (June and July). The length-age key has been established and was composed of 9 age classes, ranging from 0 to 8 years old. Males showed positive allometric growth whereas juveniles and females exhibited isometric growth. The study showed an asymptotic standard length of 658 mm and a low growth rate (K = 0.08 year(-1)). The sex ratio was equilibrated, and first maturity of females was at 277 mm standard length. The population was composed of individuals aged 3 years old and older, and 60% of the landings were composed of individuals aged 5 years and older. The growth rate was lower than for Asian and African populations, and the age-length key provided was specific to the studied reservoir. However, some biological traits of the O. niloticus population were similar to those found for other population in the world: (i) formation of an annual annulus during the reproduction period, at the beginning of the warm and wet season like populations from subtropical countries, and (ii) an isometric or a positive allometric growth as seen in populations that were not overexploited and were living in favourable environmental conditions. Therefore, the present study suggests that the O. niloticus population of the NT2 Reservoir was not overexploited at the time of the survey.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0399-0974 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2553
Lien permanent pour cet enregistrement
 

 
Auteur Aubert, A.; Antajan, E.; Lynam, C.; Pitois, S.; Pliru, A.; Vaz, S.; Thibault, D.
Titre No more reason for ignoring gelatinous zooplankton in ecosystem assessment and marine management: Concrete cost-effective methodology during routine fishery trawl surveys Type Article scientifique
Année (down) 2018 Publication Revue Abrégée Mar. Pol.
Volume 89 Numéro Pages 100-108
Mots-Clés scyphomedusae; abundance; climate-change; Monitoring; aurelia-aurita; Gelatinous zooplankton; irish sea; Jellyfish; jellyfish blooms; large medusae; Marine management; msfd; northern california current; spatial overlap; surface waters; Trawl
Résumé Gelatinous zooplankton, including cnidarians, ctenophores, and tunicates (appendicularians, pyrosomes, salps and doliolids), are often overlooked by scientific studies, ecosystem assessments and at a management level. Despite the important economic consequences that they can have on human activities and on the marine food web, arguments often related to the costs of monitoring or their coordination, or simply negligence, have resulted in the absence of relevant monitoring programs. A cost-effective protocol has been applied on trawling from existing fishery surveys conducted by national laboratories in England and France. The testing phase has successfully demonstrated the adequacy of such a tool to sample macro- and mega-zooplankton gelatinous organisms in a cost-effective way. This success has led to the acceptance of this protocol into the French implementation of the EU's Marine Strategy Framework Directive (MSFD). Here, a protocol which can be applied to any trawl-based fishery survey and in any new large-scale monitoring program is provided. As an ecosystem approach to marine management is currently adopted, exemplified by the MSFD in Europe, gelatinous zoo plankton should be monitored correctly to prevent a knowledge gap and bias to ecosystem assessments in future.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0308-597x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2310
Lien permanent pour cet enregistrement
 

 
Auteur Benedetti, F.; Vogt, M.; Righetti, D.; Guilhaumon, F.; Ayata, S.-D.
Titre Do functional groups of planktonic copepods differ in their ecological niches? Type Article scientifique
Année (down) 2018 Publication Revue Abrégée J. Biogeogr.
Volume 45 Numéro 3 Pages 604-616
Mots-Clés climate-change; copepods; species distribution models; north-atlantic; calanus-finmarchicus; mediterranean sea; environmental niche; functional groups; lipid pump; marine ecosystem; oithona-similis; pseudo-absences; trait biogeography; zooplankton; zooplankton fecal pellets
Résumé Aim: To assess the degree of overlap between the environmental niches of marine planktonic copepods and test if the distribution of copepod functional groups differs across environmental gradients. Location: The Mediterranean Sea. Methods: Functional groups were defined based on clustering of functional traits in 106 marine copepod species using a multivariate ordination analysis. Functional traits included maximum body length, feeding mode, spawning strategy and trophic group. Simultaneously, the global distribution of the species was used to model their environmental niches with six environmental variables. For each of these predictors, four niche parameters were derived from the univariate response curve of each species to summarise their environmental preferences and ordinate the species in niche space through a PCA. Finally, the differences in the position in niche space of functional groups were tested with variance analysis. Results: We identified seven copepod functional groups with different distributions along the environmental gradients covered by our study. While carnivorous functional groups were affiliated with oligotrophic and tropical conditions, large and small current-feeding herbivores are associated with colder, more seasonally varying and productive conditions. Small cruising detritivores and other small current-feeding herbivores were not affiliated with specific conditions as their constituting species were scattered in niche space. Main conclusions: Since copepod functional groups occupy distinct ecological niches, ecosystem processes related to these groups are expected to vary across environmental gradients. Conditions favouring large current-feeding herbivores should allow for enhanced fluxes of energy and nutrients through Mediterranean Sea ecosystems, while such fluxes should be weakened where large carnivores and small passive ambush-feeding copepods dominate. Our study supports the development of trait-based zooplankton functional groups in marine ecosystem models.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0305-0270 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2311
Lien permanent pour cet enregistrement