|   | 
Détails
   web
Enregistrements
Auteur Cox, S.L.; Embling, C.B.; Hosegood, P.J.; Votier, S.C.; Ingram, S.N.
Titre (up) Oceanographic drivers of marine mammal and seabird habitat-use across shelf-seas: A guide to key features and recommendations for future research and conservation management Type Article scientifique
Année 2018 Publication Revue Abrégée Estuar. Coast. Shelf Sci.
Volume 212 Numéro Pages 294-310
Mots-Clés Bio-physical coupling; bottle-nosed dolphins; california current system; coastal upwelling system; Conservation management; ecosystem-based management; Foraging ecology; Habitat selection; Marine mammals; Oceanography; porpoise phocoena-phocoena; predator-prey interactions; Seabirds; southeastern bering-sea; st-george island; thin zooplankton layers; tidal-stream environments
Résumé Mid-latitude (similar to 30-60 degrees) seasonally stratifying shelf-seas support a high abundance and diversity of marine predators such as marine mammals and seabirds. However, anthropogenic activities and climate change impacts are driving changes in the distributions and population dynamics of these animals, with negative consequences for ecosystem functioning. Across mid-latitude shelf-seas marine mammals and seabirds are known to forage across a number of oceanographic habitats that structure the spatio-temporal distributions of prey fields. Knowledge of these and the bio-physical mechanisms driving such associations are needed to improve marine management and policy. Here, we provide a concise and easily accessible guide for both researchers and managers of marine systems on the predominant oceanographic habitats that are favoured for foraging by marine mammals and seabirds across mid-latitude shelf-seas. We (1) identify and describe key discrete physical features present across the continental shelf, working inshore from the shelf-edge to the shore line, (2) provide an overview of findings relating to associations between these habitats and marine mammals and seabirds, (3) identify areas for future research and (4) discuss the relevance of such information to conservation management. We show that oceanographic features preferentially foraged at by marine mammals and seabirds include shelf edge fronts, upwelling and tidal-mixing fronts, offshore banks and internal waves, regions of stratification, and topographically complex coastal areas subject to strong tidal flow. Whilst associations were variable across taxa and through space and time, in the majority of cases interactions between bathymetry and tidal currents appear to play a dominant role, alongside patterns in seasonal stratification and shelf-edge upwelling. We suggest that the ecological significance of these bio-physical structures stems from a capacity to alter the densities, distributions (both horizontally and vertically) and/or behaviours of prey in a persistent and/or predictable manner that increases accessibility for predators, and likely enhances foraging efficiency. Future conservation management should aim to preserve and protect these habitats. This will require adaptive and holistic strategies that are specifically tailored to the characteristics of an oceanographic feature, and where necessary, evolve through space and time in response to spatio-temporal variability. Improved monitoring of animal movements and biophysical conditions across shelf-seas would aid in this. Areas for future research include multi-disciplinary/ trophic studies of the mechanisms linking bio-physical processes, prey and marine mammals and seabirds (which may elucidate the importance of lesser studied features such as bottom fronts and Langmuir circulation cells), alongside a better understanding of how predators perceive their environment and develop foraging strategies during immature/juvenile stages. Estimates of the importance of oceanographic habitat features at a population level should also be obtained. Such information is vital to ensuring the future health of these complex ecosystems, and can be used to assess how anthropogenic activities and future environmental changes will impact the functioning and spatio-temporal dynamics of these bio-physical features and their use by marine predators.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0272-7714 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2428
Lien permanent pour cet enregistrement
 

 
Auteur Lopez-Joven, C.; Rolland, J.-L.; Haffner, P.; Caro, A.; Roques, C.; Carré, C.; Travers, M.-A.; Abadie, E.; Laabir, M.; Bonnet, D.; Destoumieux-Garzón, D.
Titre (up) Oyster Farming, Temperature, and Plankton Influence the Dynamics of Pathogenic Vibrios in the Thau Lagoon Type Article scientifique
Année 2018 Publication Revue Abrégée Front. Microbiol.
Volume 9 Numéro Pages
Mots-Clés bivalve mollusks; mortality outbreak; Phytoplankton; Shellfish farming; Vibrio; Zooplankton
Résumé Vibrio species have been associated with recurrent mass mortalities of juvenile oysters Crassostrea gigas threatening oyster farming worldwide. However, knowledge of the ecology of pathogens in affected oyster farming areas remains scarce. Specifically, there are no data regarding (i) the environmental reservoirs of Vibrio populations pathogenic to oysters, (ii) the environmental factors favoring their transmission, and (iii) the influence of oyster farming on the persistence of those pathogens. This knowledge gap limits our capacity to predict and mitigate disease occurrence. To address these issues, we monitored Vibrio species potentially pathogenic to C. gigas in 2013 and 2014 in the Thau Lagoon, a major oyster farming region in the coastal French Mediterranean. Sampling stations were chosen inside and outside oyster farms. Abundance and composition of phyto-, microzoo-, and mesozooplankton communities were measured monthly. The spatial and temporal dynamics of plankton and Vibrio species were compared, and positive correlations between plankton species and vibrios were verified by qPCR on isolated specimens of plankton. Vibrio crassostreae was present in the water column over both years, whereas Vibrio tasmaniensis was mostly found in 2013 and Vibrio aestuarianus was never detected. Moreover, V. tasmaniensis and V. crassostreae were found both as free-living or plankton-attached vibrios one month after spring mortalities of the oyster juveniles. Overall, V. crassostreae was associated with temperature and plankton composition, whereas V. tasmaniensis correlated with plankton composition only. The abundance of Vibrio species in the water column was similar inside and outside oyster farms, suggesting important spatial dispersion of pathogens in surrounding areas. Remarkably, a major increase in V. tasmaniensis and V. crassostreae was measured in the sediment of oyster farms during cold months. Thus, a winter reservoir of pathogenic vibrios could contribute to their ecology in this Mediterranean shellfish farming ecosystem.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1664-302x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2438
Lien permanent pour cet enregistrement
 

 
Auteur Collos, Y.; Jauzein, C.; Hatey, E.
Titre (up) Particulate carbon and nitrogen determinations in tracer studies: The neglected variables Type Article scientifique
Année 2014 Publication Applied Radiation and Isotopes Revue Abrégée
Volume 94 Numéro Pages 14-22
Mots-Clés Suspended particulate matter; Carbon; Nitrogen; Adsorption; Material loss; Phytoplankton
Résumé Abstract

We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate the first and filtering different volumes of water in order to evaluate the second.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0969-8043 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1318
Lien permanent pour cet enregistrement
 

 
Auteur Auguet, J.C.; Casamayor, E.O.
Titre (up) Partitioning of Thaumarchaeota populations along environmental gradients in high mountain lakes Type Article scientifique
Année 2013 Publication Revue Abrégée FEMS Microbiology Ecology
Volume 84 Numéro 1 Pages 154-164
Mots-Clés amoA gene Euryarchaeota Freshwater Nitrogen Plankton SAGMGC
Résumé We investigated the spatial distribution and diversity of ammonia-oxidizing Archaea (AOA) across gradients of pH, trophic status and altitude in a set of high mountain lakes (Limnological Observatory of the Pyrenees, north-east Spain). Both phylogeny- and taxonomy-based approaches revealed well-defined AOA community patterns with pH as the main potential driving environmental factor. The I.1a and SAGMGC-1 Thaumarchaeota clusters, and their potentially associated amoA gene variants (clusters Fresh 5 and Soil/Fresh 1, respectively) showed highest relative abundances in the most oligotrophic lakes. Euryarchaeota (i.e. HV-Fresh cluster, Methanomicrobiales and Thermoplasmatales) dominated in lakes with higher trophic status. Phylogenetic diversity (PD) in Pyrenean lakes was 1.5- to 2.3-fold higher than the PD from an equivalent number of globally distributed marine and soil sites. We observed segregated distributions for SAGMGC-1, preferentially distributed in the lakes with the lowest pH (< 5) and the highest nitrite concentration (> 0.12 μm), and I.1a in lakes with lower nitrite and dissolved organic carbon concentrations below 0.5 mg L-1. Overall, these results showed strong selection by local environmental conditions, unveiled new ecological niches for freshwater SAGMGC-1 in low pH oligotrophic lakes, and suggested specific and successful adaptations of planktonic archaea to the high mountain lakes landscape. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1309
Lien permanent pour cet enregistrement
 

 
Auteur Catherine, A.; Selma, M.; Mouillot, D.; Troussellier, M.; Bernard, C.
Titre (up) Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes Type Article scientifique
Année 2016 Publication Revue Abrégée Science of The Total Environment
Volume 559 Numéro Pages 74-83
Mots-Clés Lake- and catchment-scale; Phytoplankton; Productivity–diversity relationship; Random forest; Residuals analysis; species richness
Résumé Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R2 = 0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton species richness in temperate lakes. This approach may prove useful and cost-effective for the management and conservation of aquatic ecosystems.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0048-9697 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1566
Lien permanent pour cet enregistrement