|   | 
Détails
   web
Enregistrements
Auteur Collos, Y.; Jauzein, C.; Hatey, E.
Titre Particulate carbon and nitrogen determinations in tracer studies: The neglected variables Type Article scientifique
Année 2014 Publication Applied Radiation and Isotopes Revue Abrégée (up)
Volume 94 Numéro Pages 14-22
Mots-Clés Suspended particulate matter; Carbon; Nitrogen; Adsorption; Material loss; Phytoplankton
Résumé Abstract

We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate the first and filtering different volumes of water in order to evaluate the second.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0969-8043 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1318
Lien permanent pour cet enregistrement
 

 
Auteur Brauer, V.S.; Stomp, M.; Bouvier, T.; Fouilland, E.; Leboulanger, C.; Confurius-Guns, V.; Weissing, F.J.; Stal, L.J.; Huisman, J.
Titre Competition and facilitation between the marine nitrogen-fixing cyanobacteriunn Cyanothece and its associated bacterial community Type Article scientifique
Année 2015 Publication Frontiers in Microbiology Revue Abrégée (up)
Volume 5 Numéro Pages
Mots-Clés aerobic anoxygenic phototrophs; cyanobacteria; heterotrophic bacteria; microbiota; nitrogen fixation; Phytoplankton; resource competition; species interactions
Résumé N-2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N-2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N-2-fixing cyanobacteria.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1101
Lien permanent pour cet enregistrement
 

 
Auteur Bonilla-Findji, O.; Rochelle-Newall, E.; Weinbauer, M.G.; Pizay, M.D.; Kerros, M.E.; Gattuso, J.P.
Titre Effect of seawater-freshwater cross-transplantations on viral dynamics and bacterial diversity and production Type Article scientifique
Année 2009 Publication Revue Abrégée (up) Aquat. Microb. Ecol.
Volume 54 Numéro 1 Pages 1-11
Mots-Clés aquatic systems; Bacterial production; Bacterial richness; bacterioplankton; batch cultures; chesapeake bay; Communities; community composition; dissolved organic-matter; estuarine salinity gradient; growth efficiency; marine; microbial; population-dynamics; Transplantation; Virus
Résumé Dilution experiments were carried out to investigate the community composition and the metabolic response of seawater and freshwater bacteria to cross-transplantation, and the effects of nor.-indigenous bacterial hosts on viral dynamics. Changes in viral and bacterial abundance and production, as Well as bacterial respiration, carbon demand and diversity were regularly monitored over a 6 d period. Bacterial production in the transplanted seawater (SB-t) and freshwater (FB-t) bacteria treatments was stimulated up to 256 and 221 %, respectively, compared to controls. The stimulation of bacterial production and carbon demand was accompanied by a decrease in bacterial richness. Net viral production was stimulated by 81% in SB-t and repressed by 75% in FB-t. Transplantation increased the virus-induced mortality of marine bacteria, but decreased it for freshwater bacteria. These results suggest that (1) marine bacteria can readily oxidize freshwater dissolved organic matter, and (2) freshwater viruses might be able to infect marine hosts, thus highlighting their potential role in fueling bacterial growth under resource stress or nutrient-depleted conditions.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0948-3055 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 546
Lien permanent pour cet enregistrement
 

 
Auteur Bourgeois, S.; Hochard, S.; Pringault, O.
Titre Subtidal microphytobenthos: effects of inorganic and organic compound supplies on migration, production, and respiration in a tropical coastal environment Type Article scientifique
Année 2010 Publication Revue Abrégée (up) Aquat. Microb. Ecol.
Volume 61 Numéro 1 Pages 13-29
Mots-Clés Amino acids; Autotroph-heterotroph coupling; Glucose; Nutrients; Oxygen; Reflectance; availability; benthic diatoms; chlorophyll-a fluorescence; coral-reef lagoon; headwater streams; hypersaline microbial mat; lagoon; marine; microelectrode; new-caledonia; nutrient; oxygenic photosynthesis; phytoplankton
Résumé Microphytobenthos (MPB) is an important primary producer in coastal ecosystems. In oligotrophic environments, its activity may be controlled by the availability of organic or inorganic compounds but also by its migration behavior. The objective of this study was to determine, in MPB-colonized subtidal sediments, the consequences of short-term enrichments (< 24 h) of organic (alanine, glutamate, and glucose) and inorganic (ammonium, phosphate) compounds on MPB vertical migration and metabolisms, net production (NP), areal gross production (AGP), and community respiration (R). Two contrasting stations located in the southwest lagoon of New Caledonia were investigated: 1 under strong anthropogenic influence and 1 under more oceanic influence. Both stations were dominated by epipelic diatoms. Differences in net primary production were explained by diurnal variation of MPB biomass at the sediment surface, showing the importance of MPB migration in the functioning of these subtidal environments. However, a stimulation or inhibition of MPB migration did not necessarily impact the net primary production of the system; this strongly depends upon the interactions between the autotrophic and heterotrophic compartments, the latter being controlled by the environmental conditions. For the station under low anthropogenic influence, AGP and R were both significantly stimulated by alanine, glucose, and ammonium, and significantly inhibited by phosphate. The similar responses of AGP and R to enrichments suggest that autotrophs and heterotrophs were tightly coupled. Conversely, in the station under strong anthropogenic influence, AGP and R responded differently. Addition of ammonium inhibited AGP without having an impact on R, whereas addition of phosphate inhibited R whilst having no measurable effect on AGP. In this station, the coupling between autotrophs and heterotrophs was weakened, suggesting that the carbon demand of the heterotrophic compartment is probably sustained by the supplies of allochthonous organic matter rather than by exudates from the autotrophic compartment.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0948-3055 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 886
Lien permanent pour cet enregistrement
 

 
Auteur Blanchet, M.; Pringault, O.; Panagiotopoulos, C.; Lefevre, D.; Charriere, B.; Ghiglione, J.-F.; Fernandez, C.; Aparicio, F.L.; Marrase, C.; Catala, P.; Oriol, L.; Caparros, J.; Joux, F.
Titre When riverine dissolved organic matter (DOM) meets labile DOM in coastal waters: changes in bacterial community activity and composition Type Article scientifique
Année 2017 Publication Revue Abrégée (up) Aquat. Sci.
Volume 79 Numéro 1 Pages 27-43
Mots-Clés Bacterial community composition; bacterioplankton; biodegradation; carbon; coastal waters; Dissolved organic matter; Fluorescence; growth efficiency; lake water; marine; Mediterranean Sea; open-ocean; Priming effect; rhone river; terrestrial
Résumé Heterotrophic bacterial communities in marine environments are exposed to a heterogeneous mixture of dissolved organic compounds with different bioreactivity that may control both their activity and composition. The coastal environment is an example of a mixing area where recalcitrant allochthonous organic matter from rivers can encounter labile organic matter from marine phytoplanktonic blooms. The objective of this study was to explore the effects of mixed qualities of dissolved organic matter (DOM) on bacterial community activity (BCA) and bacterial community composition (BCC) and to test for a priming effect when DOM sources are added in combination. Coastal marine bacterial communities were incubated separately with a mixture of amino acids and with natural riverine DOM or with both sources together for 42 days. Addition of amino acids alone or in combination with riverine DOM led to a similar stimulation of BCA compared to control condition, whereas addition of riverine DOM alone did not modify BCA compared to the control. On the contrary, BCC analyzed by 16S rRNA gene pyrosequencing was not affected by the addition of amino acids alone, but changed dramatically with riverine DOM alone or in combination with amino acids. Our results show that changes in BCA and BCC can be driven by different types of DOM, but that these changes are not necessarily coupled. Moreover, the addition of labile DOM did not modify the microbial decomposition of riverine DOM, nor the BCC, suggesting that a priming effect did not occur under these experimental conditions.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1015-1621 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2090
Lien permanent pour cet enregistrement