bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur (up) Bourjea, J.; Clermont, S.; Delgado, A.; Murua, H.; Ruiz, J.; Ciccione, S.; Chavance, P. url  doi
openurl 
  Titre Marine turtle interaction with purse-seine fishery in the Atlantic and Indian oceans: Lessons for management Type Article scientifique
  Année 2014 Publication Revue Abrégée Biological Conservation  
  Volume 178 Numéro Pages 74-87  
  Mots-Clés Atlantic Ocean; Bycatch; Fishery impacts; fishery management; Indian Ocean; Marine turtle  
  Résumé Bycatch of endangered marine turtles is a growing issue for the management of all fisheries, including the oceanic purse-seine fishery. The aim of this study was to assess the spatial and temporal variation in bycatch rates of these species in the entire European purse-seine fishery operating in the Atlantic and Indian oceans. The study was based on data collected through observer programs from 1995 to 2011. During that period, a total of 15 913 fishing sets were observed, including 6 515 on Drifting Fish Aggregating Devices (DFADs) and 9 398 on free swimming schools, representing a global coverage of 10.3% and 5.1% of the total fishing activity in the Atlantic and Indian Ocean, respectively. Moreover, from 2003 to 2011, 14 124 specific observations were carried out on DFADs to check turtle entanglement in the net covering DFADs. We found that the purse-seine fishery has a very low impact on marine turtles. We estimated that the annual number of individuals incidentally captured was 218 (SD = 150) and 250 (SD = 157) in the Atlantic and Indian Ocean, respectively, with more than 75% being released alive. The present study also investigated the impact of DFADs; which is considered a key conservation issue for this fishery. Drifting objects may play a key role in aggregating juveniles of marine turtles, implying the need for improving their construction to avoid entanglement (e.g. avoiding nets in the structure); however, based on our study it is not the main source of incidental captures of marine turtles in this fishery.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0006-3207 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel LL @ pixluser @ collection 349  
Lien permanent pour cet enregistrement
 

 
Auteur (up) Dalleau, M.; Kramer-Schadt, S.; Gangat, Y.; Bourjea, J.; Lajoie, G.; Grimm, V. doi  openurl
  Titre Modeling the emergence of migratory corridors and foraging hot spots of the green sea turtle Type Article scientifique
  Année 2019 Publication Revue Abrégée Ecol. Evol.  
  Volume Numéro Pages  
  Mots-Clés aldabra atoll; chelonia-mydas; connectivity; corridors; individual-based model; leatherback turtles; marine turtles; migration; movement; penghu archipelago; population-dynamics; remigration intervals; satellite-tracking; sea turtle; wan-an island  
  Résumé Environmental factors shape the spatial distribution and dynamics of populations. Understanding how these factors interact with movement behavior is critical for efficient conservation, in particular for migratory species. Adult female green sea turtles, Chelonia mydas, migrate between foraging and nesting sites that are generally separated by thousands of kilometers. As an emblematic endangered species, green turtles have been intensively studied, with a focus on nesting, migration, and foraging. Nevertheless, few attempts integrated these behaviors and their trade-offs by considering the spatial configurations of foraging and nesting grounds as well as environmental heterogeneity like oceanic currents and food distribution. We developed an individual-based model to investigate the impact of local environmental conditions on emerging migratory corridors and reproductive output and to thereby identify conservation priority sites. The model integrates movement, nesting, and foraging behavior. Despite being largely conceptual, the model captured realistic movement patterns which confirm field studies. The spatial distribution of migratory corridors and foraging hot spots was mostly constrained by features of the regional landscape, such as nesting site locations, distribution of feeding patches, and oceanic currents. These constraints also explained the mixing patterns in regional forager communities. By implementing alternative decision strategies of the turtles, we found that foraging site fidelity and nesting investment, two characteristics of green turtles' biology, are favorable strategies under unpredictable environmental conditions affecting their habitats. Based on our results, we propose specific guidelines for the regional conservation of green turtles as well as future research suggestions advancing spatial ecology of sea turtles. Being implemented in an easy to learn open-source software, our model can coevolve with the collection and analysis of new data on energy budget and movement into a generic tool for sea turtle research and conservation. Our modeling approach could also be useful for supporting the conservation of other migratory marine animals.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 2045-7758 ISBN Médium  
  Région Expédition Conférence  
  Notes WOS:000481747800001 Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2621  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: