|   | 
Détails
   web
Enregistrements
Auteur (up) Killen, S.S.; Marras, S.; McKenzie, D.J.
Titre Fast growers sprint slower: effects of food deprivation and re-feeding on sprint swimming performance in individual juvenile European sea bass Type Article scientifique
Année 2014 Publication Revue Abrégée Journal of Experimental Biology
Volume 217 Numéro 6 Pages 859-865
Mots-Clés Compensatory growth; Ecophysiology; Food deprivation; Foraging; Locomotion; atlantic; catch-up growth; cod; dicentrarchus-labrax; ecological performance; gadus-morhua; long-term starvation; metabolic responses; salmon; teleost fish; trade-off; trade-offs; trout oncorhynchus-mykiss
Résumé While many ectothermic species can withstand prolonged fasting without mortality, food deprivation may have sublethal effects of ecological importance, including reductions in locomotor ability. Little is known about how such changes in performance in individual animals are related to either mass loss during food deprivation or growth rate during re-feeding. This study followed changes in the maximum sprint swimming performance of individual European sea bass, Dicentrarchus labrax, throughout 45 days of food deprivation and 30 days of re-feeding. Maximum sprint speed did not show a significant decline until 45 days of food deprivation. Among individuals, the reduction in sprinting speed at this time was not related to mass loss. After 30 days of re-feeding, mean sprinting speed had recovered to match that of control fish. Among individuals, however, maximum sprinting speed was negatively correlated with growth rate after the resumption of feeding. This suggests that the rapid compensatory growth that occurs during re-feeding after a prolonged fast carries a physiological cost in terms of reduced sprinting capacity, the extent of which shows continuous variation among individuals in relation to growth rate. The long-term repeatability of maximum sprint speed was low when fish were fasted or fed a maintenance ration, but was high among control fish fed to satiation. Fish that had been previously food deprived continued to show low repeatability in sprinting ability even after the initiation of ad libitum feeding, probably stemming from variation in compensatory growth among individuals and its associated negative effects on sprinting ability. Together, these results suggest that food limitation can disrupt hierarchies of maximum sprint performance within populations. In the wild, the cumulative effects on locomotor capacity of fasting and re-feeding could lead to variable survival among individuals with different growth trajectories following a period of food deprivation.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0022-0949 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 601
Lien permanent pour cet enregistrement
 

 
Auteur (up) Krause, J.; Herbert-Read, J.E.; Seebacher, F.; Domenici, P.; Wilson, A.D.M.; Marras, S.; Svendsen, M.B.S.; Strombom, D.; Steffensen, J.F.; Krause, S.; Viblanc, P.E.; Couillaud, P.; Bach, P.; Sabarros, P.S.; Zaslansky, P.; Kurvers, R.H.J.M.
Titre Injury-mediated decrease in locomotor performance increases predation risk in schooling fish Type Article scientifique
Année 2017 Publication Revue Abrégée Philos. Trans. R. Soc. B-Biol. Sci.
Volume 372 Numéro 1727 Pages 20160232
Mots-Clés animal groups; Behavior; danger; fish schools; geometry; group-living; killer whales; locomotion; organization; Predation; prey interactions; selfish herd; spatial position; spatial positions; vertebrates
Résumé The costs and benefits of group living often depend on the spatial position of individuals within groups and the ability of individuals to occupy preferred positions. For example, models of predation events for moving prey groups predict higher mortality risk for individuals at the periphery and front of groups. We investigated these predictions in sardine (Sardinella aurita) schools under attack from group hunting sailfish (Istiophorus platypterus) in the open ocean. Sailfish approached sardine schools about equally often from the front and rear, but prior to attack there was a chasing period in which sardines attempted to swim away from the predator. Consequently, all sailfish attacks were directed at the rear and peripheral positions of the school, resulting in higher predation risk for individuals at these positions. During attacks, sailfish slash at sardines with their bill causing prey injury including scale removal and tissue damage. Sardines injured in previous attacks were more often found in the rear half of the school than in the front half. Moreover, injured fish had lower tail-beat frequencies and lagged behind uninjured fish. Injuries inflicted by sailfish bills may, therefore, hinder prey swimming speed and drive spatial sorting in prey schools through passive self-assortment. We found only partial support for the theoretical predictions from current predator-prey models, highlighting the importance of incorporating more realistic predator-prey dynamics into these models. This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0962-8436 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2161
Lien permanent pour cet enregistrement