|   | 
Détails
   web
Enregistrements
Auteur Abgrall, C.; Chauvat, M.; Langlois, E.; Hedde, M.; Mouillot, D.; Salmon, S.; Winck, B.; Forey, E.
Titre Shifts and linkages of functional diversity between above- and below-ground compartments along a flooding gradient Type Article scientifique
Année 2017 Publication Revue Abrégée Funct. Ecol.
Volume 31 Numéro 2 Pages 350-360
Mots-Clés biodiversity; community assembly; community ecology; disturbance; divergence; environmental gradient; feeding guilds; functional traits; microarthropod communities; null models; patterns; plant; plant communities; soil collembola; soil-plant interactions; species traits; trait convergence and trait divergence
Résumé 1. Trait-based approaches have the potential to reveal general and predictive relationships between organisms and ecosystem functioning. However, the mechanisms underlying the functional structure of communities are still unclear. Within terrestrial ecosystems, several studies have shown that many ecological processes are controlled by the interacting above-and belowground compartments. However, few studies have used traits to reveal the functional relationships between plants and soil fauna. Mostly, research combining plants and soil fauna solely used the traits of one assemblage in predictive studies. 2. Above-ground (plants) and below-ground (Collembola) compartments were sampled over a flooding gradient in northern France along the Seine River. First, we measured the effect of flooding on functional and taxonomic assembly within both communities. We then considered the linkages between plant and Collembolan species richness, community traits and assessed whether traits of both compartments converged at high flooding intensity (abiotic filtering) and diverged when this constraint is released (biotic filtering). 3. Species richness of both taxa followed the same bell-shaped pattern along the gradient, while a similar significant pattern of functional richness was only observed for plants. Further analyses revealed a progressive shift from trait convergence to divergence for plants, but not for Collembola, as constraints intensity decreased. Instead, our results highlighted that Collembola traits were mainly linked to the variations in plant traits. This leads, within Collembola assemblages, to convergence of a subset of perception and habitat-related traits for which the relationship with plant traits was assessed. 4. Synthesis. Using a trait-based approach, our study highlighted that functional relationships occur between above-and below-ground compartments. We underlined that functional composition of plant communities plays a key role in structuring Collembola assemblages in addition to the role of abiotic variables. Our study clearly shows that functional diversity provides a new approach to link the above-and below-ground compartments and might, therefore, be further considered when studying ecological processes at the interface between both compartments.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0269-8463 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2091
Lien permanent pour cet enregistrement
 

 
Auteur Abi-Khalil, C.; Lopez-Joven, C.; Abadie, E.; Savar, V.; Amzil, Z.; Laabir, M.; Rolland, J.-L.
Titre Exposure to the Paralytic Shellfish Toxin Producer Alexandrium catenella Increases the Susceptibility of the Oyster Crassostrea gigas to Pathogenic Vibrios Type Article scientifique
Année 2016 Publication Revue Abrégée Toxins
Volume 8 Numéro 1 Pages 24
Mots-Clés defense; environment; harmful algae; interaction; paralytic shellfish toxin; pathogens
Résumé The multifactorial etiology of massive Crassostrea gigas summer mortalities results from complex interactions between oysters, opportunistic pathogens and environmental factors. In a field survey conducted in 2014 in the Mediterranean Thau Lagoon (France), we evidenced that the development of the toxic dinoflagellate Alexandrium catenella, which produces paralytic shellfish toxins (PSTs), was concomitant with the accumulation of PSTs in oyster flesh and the occurrence of C. gigas mortalities. In order to investigate the possible role of toxic algae in this complex disease, we experimentally infected C. gigas oyster juveniles with Vibrio tasmaniensis strain LGP32, a strain associated with oyster summer mortalities, after oysters were exposed to Alexandrium catenella. Exposure of oysters to A. catenella significantly increased the susceptibility of oysters to V. tasmaniensis LGP32. On the contrary, exposure to the non-toxic dinoflagellate Alexandrium tamarense or to the haptophyte Tisochrysis lutea used as a foraging alga did not increase susceptibility to V. tasmaniensis LGP32. This study shows for the first time that A. catenella increases the susceptibility of Crassostrea gigas to pathogenic vibrios. Therefore, in addition to complex environmental factors explaining the mass mortalities of bivalve mollusks, feeding on neurotoxic dinoflagellates should now be considered as an environmental factor that potentially increases the severity of oyster mortality events.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1623
Lien permanent pour cet enregistrement
 

 
Auteur Amélineau, F.; Grémillet, D.; Bonnet, D.; Bot, T.L.; Fort, J.
Titre Where to Forage in the Absence of Sea Ice? Bathymetry As a Key Factor for an Arctic Seabird Type Article scientifique
Année 2016 Publication Revue Abrégée Plos One
Volume 11 Numéro 7 Pages e0157764
Mots-Clés Birds; Copepods; Foraging; Predation; Seabirds; Sea ice; Trophic interactions; Zooplankton
Résumé The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1932-6203 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1592
Lien permanent pour cet enregistrement
 

 
Auteur Blasco, F.R.; McKenzie, D.J.; Taylor, E.W.; Rantin, F.T.
Titre The role of the autonomic nervous system in control of cardiac and air-breathing responses to sustained aerobic exercise in the African sharptooth catfish Clarias gariepinus Type Article scientifique
Année 2017 Publication Revue Abrégée Comp. Biochem. Physiol. A-Mol. Integr. Physiol.
Volume 203 Numéro Pages 273-280
Mots-Clés Adrenergic tone; bass dicentrarchus-labrax; cardiorespiratory interactions; Cholinergic tone; Fishes; Heart rate; heart-rate; hoplerythrinus-unitaeniatus; Hypoxia; oxygen-tensions; rainbow-trout; salmo-gairdneri; Swimming; synbranchus-marmoratus
Résumé Clarias gariepinus is a facultative air-breathing catfish that exhibits changes in heart rate (f(H)) associated with air breaths (AB). A transient bradycardia prior to the AB is followed by sustained tachycardia during breath-hold. This study evaluated air-breathing and cardiac responses to sustained aerobic exercise in juveniles (total length similar to 20 cm), and how exercise influenced variations in f(H) associated with AB. In particular, it investigated the role of adrenergic and cholinergic control in cardiac responses, and effects of pharmacological abolition of this control on air-breathing responses. Sustained exercise at 15, 30 and 45 cm s(-1) in a swim tunnel caused significant increases in f(AB) and f(H), from approximately 5 breaths h(-1) and 60 heartbeats min(-1) at the lowest speed, to over 60 breaths h(-1) and 100 beats min(-1) at the highest, respectively. There was a progressive decline in the degree of variation in f(H), around each AB, as f(AB) increased with exercise intensity. Total autonomic blockade abolished all variation in fH during exercise, and around each AB, but f(AB) responses were the same as in untreated animals. Cardiac responses were exclusively due to modulation of inhibitory cholinergic tone, which varied from >100% at the lowest speed to <10% at the highest. Cholinergic blockade had no effect on f(AB) compared to untreated fish. Excitatory beta-adrenergic tone was approximately 20% and did not vary with swimming speed, but its blockade increased f(AB) at all speeds, compared to untreated animals. This reveals complex effects of autonomic control on air-breathing during exercise in C. gariepinus, which deserve further investigation. (C) 2016 Elsevier Inc. All rights reserved.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1095-6433 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1714
Lien permanent pour cet enregistrement
 

 
Auteur Boyd, C.; Castillo, R.; Hunt, G.L.; Punt, A.E.; VanBlaricom, G.R.; Weimerskirch, H.; Bertrand, S.
Titre Predictive modelling of habitat selection by marine predators with respect to the abundance and depth distribution of pelagic prey Type Article scientifique
Année 2015 Publication Revue Abrégée J Anim Ecol
Volume 84 Numéro 6 Pages 1575-1588
Mots-Clés central place foragers; Foraging ecology; habitat use; Humboldt Current system; predator–prey interactions; spatial distribution
Résumé * Understanding the ecological processes that underpin species distribution patterns is a fundamental goal in spatial ecology. However, developing predictive models of habitat use is challenging for species that forage in marine environments, as both predators and prey are often highly mobile and difficult to monitor. Consequently, few studies have developed resource selection functions for marine predators based directly on the abundance and distribution of their prey. * We analysed contemporaneous data on the diving locations of two seabird species, the shallow-diving Peruvian Booby (Sula variegata) and deeper diving Guanay Cormorant (Phalacrocorax bougainvilliorum), and the abundance and depth distribution of their main prey, Peruvian anchoveta (Engraulis ringens). Based on this unique data set, we developed resource selection functions to test the hypothesis that the probability of seabird diving behaviour at a given location is a function of the relative abundance of prey in the upper water column. * For both species, we show that the probability of diving behaviour is mostly explained by the distribution of prey at shallow depths. While the probability of diving behaviour increases sharply with prey abundance at relatively low levels of abundance, support for including abundance in addition to the depth distribution of prey is weak, suggesting that prey abundance was not a major factor determining the location of diving behaviour during the study period. * The study thus highlights the importance of the depth distribution of prey for two species of seabird with different diving capabilities. The results complement previous research that points towards the importance of oceanographic processes that enhance the accessibility of prey to seabirds. The implications are that locations where prey is predictably found at accessible depths may be more important for surface foragers, such as seabirds, than locations where prey is predictably abundant. * Analysis of the relative importance of abundance and accessibility is essential for the design and evaluation of effective management responses to reduced prey availability for seabirds and other top predators in marine systems.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1365-2656 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1349
Lien permanent pour cet enregistrement