|   | 
Détails
   web
Enregistrements
Auteur Puerta, P.; Johnson, C.; Carreiro-Silva, M.; Henry, L.-A.; Kenchington, E.; Morato, T.; Kazanidis, G.; Luis Rueda, J.; Urra, J.; Ross, S.; Wei, C.-L.; Manuel Gonzalez-Irusta, J.; Arnaud-Haond, S.; Orejas, C.
Titre (up) Influence of Water Masses on the Biodiversity and Biogeography of Deep-Sea Benthic Ecosystems in the North Atlantic Type Article scientifique
Année 2020 Publication Revue Abrégée Front. Mar. Sci.
Volume 7 Numéro Pages 239
Mots-Clés antarctic intermediate water; biodiversity; biogeography; climate-change impacts; coral lophelia-pertusa; deep-sea; food-supply mechanisms; global habitat suitability; meridional overturning circulation; ne atlantic; North Atlantic; ocean acidification; porcupine seabight; rockall trough margin; vulnerable marine ecosystems; water masses
Résumé Circulation patterns in the North Atlantic Ocean have changed and re-organized multiple times over millions of years, influencing the biodiversity, distribution, and connectivity patterns of deep-sea species and ecosystems. In this study, we review the effects of the water mass properties (temperature, salinity, food supply, carbonate chemistry, and oxygen) on deep-sea benthic megafauna (from species to community level) and discussed in future scenarios of climate change. We focus on the key oceanic controls on deep-sea megafauna biodiversity and biogeography patterns. We place particular attention on cold-water corals and sponges, as these are ecosystem-engineering organisms that constitute vulnerable marine ecosystems (VME) with high associated biodiversity. Besides documenting the current state of the knowledge on this topic, a future scenario for water mass properties in the deep North Atlantic basin was predicted. The pace and severity of climate change in the deep-sea will vary across regions. However, predicted water mass properties showed that all regions in the North Atlantic will be exposed to multiple stressors by 2100, experiencing at least one critical change in water temperature (+2 degrees C), organic carbon fluxes (reduced up to 50%), ocean acidification (pH reduced up to 0.3), aragonite saturation horizon (shoaling above 1000 m) and/or reduction in dissolved oxygen (> 5%). The northernmost regions of the North Atlantic will suffer the greatest impacts. Warmer and more acidic oceans will drastically reduce the suitable habitat for ecosystem-engineers, with severe consequences such as declines in population densities, even compromising their long-term survival, loss of biodiversity and reduced biogeographic distribution that might compromise connectivity at large scales. These effects can be aggravated by reductions in carbon fluxes, particularly in areas where food availability is already limited. Declines in benthic biomass and biodiversity will diminish ecosystem services such as habitat provision, nutrient cycling, etc. This study shows that the deep-sea VME affected by contemporary anthropogenic impacts and with the ongoing climate change impacts are unlikely to withstand additional pressures from more intrusive human activities. This study serves also as a warning to protect these ecosystems through regulations and by tempering the ongoing socio-political drivers for increasing exploitation of marine resources.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes WOS:000526864100001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2767
Lien permanent pour cet enregistrement
 

 
Auteur Benedetti, F.; Guilhaumon, F.; Adloff, F.; Ayata, S.-D.
Titre (up) Investigating uncertainties in zooplankton composition shifts under climate change scenarios in the Mediterranean Sea Type Article scientifique
Année 2018 Publication Revue Abrégée Ecography
Volume 41 Numéro 2 Pages 345-360
Mots-Clés marine biodiversity; species distribution models; north-atlantic; beta diversity; calanoid copepods; ecological-niche; envelope models; habitat-suitability; mass mortality; pseudo-absence data
Résumé Ensemble niche modelling has become a common framework to predict changes in assemblages composition under climate change scenarios. The amount of uncertainty generated by the different components of this framework has rarely been assessed. In the marine realm forecasts have usually focused on taxa representing the top of the marine food-web, thus overlooking their basal component: the plankton. Calibrating environmental niche models at the global scale, we modelled the habitat suitability of 106 copepod species and estimated the dissimilarity between present and future zooplanktonic assemblages in the surface Mediterranean Sea. We identified the patterns (species replacement versus nestedness) driving the predicted dissimilarity, and quantified the relative contributions of different uncertainty sources: environmental niche models, greenhouse gas emission scenarios, circulation model configurations and species prevalence. Our results confirm that the choice of the niche modelling method is the greatest source of uncertainty in habitat suitability projections. Presence-only and presence-absence methods provided different visions of the niches, which subsequently lead to different future scenarios of biodiversity changes. Nestedness with decline in species richness is the pattern driving dissimilarity between present and future copepod assemblages. Our projections contrast with those reported for higher trophic levels, suggesting that different components of the pelagic food-web may respond discordantly to future climatic changes.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0906-7590 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2282
Lien permanent pour cet enregistrement
 

 
Auteur Massol, F.; Dubart, M.; Calcagno, V.; Cazelles, K.; Jacquet, C.; Kefi, S.; Gravel, D.
Titre (up) Island Biogeography of Food Webs Type Chapitre de livre
Année 2017 Publication Revue Abrégée
Volume Numéro Pages 183-262
Mots-Clés animal abundance; body-size; complex networks; coral-reef fishes; coupled chemical-reactions; ecological communities; experimental zoogeography; habitat loss; power-laws; species-area relationship
Résumé To understand why and how species invade ecosystems, ecologists have made heavy use of observations of species colonization on islands. The theory of island biogeography, developed in the 1960s by R.H. MacArthur and E.O. Wilson, has had a tremendous impact on how ecologists understand the link between species diversity and characteristics of the habitat such as isolation and size. Recent developments have described how the inclusion of information on trophic interactions can further inform our understanding of island biogeography dynamics. Here, we extend the trophic theory of island biogeography to assess whether certain food web properties on the mainland affect colonization/extinction dynamics of species on islands. Our results highlight that both food web connectance and size on the mainland increase species diversity on islands. We also highlight that more heavily tailed degree distributions in the mainland food web correlate with less frequent but potentially more important extinction cascades on islands. The average shortest path to a basal species on islands follows a hump-shaped curve as a function of realized species richness, with food chains slightly longer than on the mainland at intermediate species richness. More modular mainland webs are also less persistent on islands. We discuss our results in the context of global changes and from the viewpoint of community assembly rules, aiming at pinpointing further theoretical developments needed to make the trophic theory of island biogeography even more useful for fundamental and applied ecology.
Adresse
Auteur institutionnel Thèse
Editeur Elsevier Academic Press Inc Lieu de Publication San Diego Éditeur Bohan, D.A.; Dumbrell, A.J.; Massol, F.
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé Networks of Invasion: A Synthesis of Concepts
Volume de collection 56 Numéro de collection Edition
ISSN ISBN 978-0-12-804331-8 978-0-12-804338-7 Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2174
Lien permanent pour cet enregistrement
 

 
Auteur Matthews, T.J.; Triantis, K.A.; Rigal, F.; Borregaard, M.K.; Guilhaumon, F.; Whittaker, R.J.
Titre (up) Island species–area relationships and species accumulation curves are not equivalent: an analysis of habitat island datasets Type Article scientifique
Année 2016 Publication Revue Abrégée Global Ecology and Biogeography
Volume 25 Numéro 5 Pages 607-618
Mots-Clés Boosted regression trees; conservation biogeography; fragmentation; habitat islands; island biogeography; island species–area relationship; macroecology; nestedness; species accumulation curve; species–area relationship
Résumé Aim The relationship between species number and area is of fundamental importance in macroecology and conservation science, yet the implications of different means of quantitative depiction of the relationship remain contentious. We set out (1) to establish the variation in form of the relationship between two distinct methods applied to the same habitat island datasets, (2) to explore the relevance of several key dataset properties for variation in the parameters of these relationships, and (3) to assess the implications for application of the resulting models. Locations Global. Methods Through literature search we compiled 97 habitat island datasets. For each we analysed the form of the island species–area relationship (ISAR) and several versions of species accumulation curve (SAC), giving priority to a randomized form (Ran-SAC). Having established the validity of the power model, we compared the slopes (z-values) between the ISAR and the SAC for each dataset. We used boosted regression tree and simulation analyses to investigate the effect of nestedness and other variables in driving observed differences in z-values between ISARs and SACs. Results The Ran-SAC was steeper than the ISAR in 77% of datasets. The differences were primarily driven by the degree of nestedness, although other variables (e.g. the number of islands in a dataset) were also important. The ISAR was often a poor predictor of archipelago species richness. Main conclusions Slopes of the ISAR and SAC for the same data set can vary substantially, revealing their non-equivalence, with implications for applications of species–area curve parameters in conservation science. For example, the ISAR was a poor predictor of archipelagic richness in datasets with a low degree of nestedness. Caution should be employed when using the ISAR for the purposes of extrapolation and prediction in habitat island systems.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1466-8238 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1559
Lien permanent pour cet enregistrement
 

 
Auteur Mazel, F.; Renaud, J.; Guilhaumon, F.; Mouillot, D.; Gravel, D.; Thuiller, W.
Titre (up) Mammalian phylogenetic diversity-area relationships at a continental scale Type Article scientifique
Année 2015 Publication Revue Abrégée Ecology
Volume 96 Numéro 10 Pages 2814-2822
Mots-Clés Biodiversity; Biogeography; community ecology; conservation; conservation biogeography; habitat loss; habitat loss; null models; overestimate extinction rates; patterns; phylogenetic diversity; richness; species-area; species-area relationship; statistics; strict nested design
Résumé In analogy to the species-area relationship (SAR), one of the few laws in ecology, the phylogenetic diversity-area relationship (PDAR) describes the tendency of phylogenetic diversity (PD) to increase with area. Although investigating PDAR has the potential to unravel the underlying processes shaping assemblages across spatial scales and to predict PD loss through habitat reduction, it has been little investigated so far. Focusing on PD has noticeable advantages compared to species richness (SR), since PD also gives insights on processes such as speciation/extinction, assembly rules and ecosystem functioning. Here we investigate the universality and pervasiveness of the PDAR at continental scale using terrestrial mammals as study case. We define the relative robustness of PD (compared to SR) to habitat loss as the area between the standardized PDAR and standardized SAR (i.e., standardized by the diversity of the largest spatial window) divided by the area under the standardized SAR only. This metric quantifies the relative increase of PD robustness compared to SR robustness. We show that PD robustness is higher than SR robustness but that it varies among continents. We further use a null model approach to disentangle the relative effect of phylogenetic tree shape and nonrandom spatial distribution of evolutionary history on the PDAR. We find that, for most spatial scales and for all continents except Eurasia, PDARs are not different from expected by a model using only the observed SAR and the shape of the phylogenetic tree at continental scale. Interestingly, we detect a strong phylogenetic structure of the Eurasian PDAR that can be predicted by a model that specifically account for a finer biogeographical delineation of this continent. In conclusion, the relative robustness of PD to habitat loss compared to species richness is determined by the phylogenetic tree shape but also depends on the spatial structure of PD.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0012-9658 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1423
Lien permanent pour cet enregistrement