|   | 
Détails
   web
Enregistrements
Auteur Matthews, T.J.; Triantis, K.A.; Rigal, F.; Borregaard, M.K.; Guilhaumon, F.; Whittaker, R.J.
Titre Island species–area relationships and species accumulation curves are not equivalent: an analysis of habitat island datasets Type Article scientifique
Année 2016 Publication Revue Abrégée Global Ecology and Biogeography
Volume 25 Numéro 5 Pages (down) 607-618
Mots-Clés Boosted regression trees; conservation biogeography; fragmentation; habitat islands; island biogeography; island species–area relationship; macroecology; nestedness; species accumulation curve; species–area relationship
Résumé Aim The relationship between species number and area is of fundamental importance in macroecology and conservation science, yet the implications of different means of quantitative depiction of the relationship remain contentious. We set out (1) to establish the variation in form of the relationship between two distinct methods applied to the same habitat island datasets, (2) to explore the relevance of several key dataset properties for variation in the parameters of these relationships, and (3) to assess the implications for application of the resulting models. Locations Global. Methods Through literature search we compiled 97 habitat island datasets. For each we analysed the form of the island species–area relationship (ISAR) and several versions of species accumulation curve (SAC), giving priority to a randomized form (Ran-SAC). Having established the validity of the power model, we compared the slopes (z-values) between the ISAR and the SAC for each dataset. We used boosted regression tree and simulation analyses to investigate the effect of nestedness and other variables in driving observed differences in z-values between ISARs and SACs. Results The Ran-SAC was steeper than the ISAR in 77% of datasets. The differences were primarily driven by the degree of nestedness, although other variables (e.g. the number of islands in a dataset) were also important. The ISAR was often a poor predictor of archipelago species richness. Main conclusions Slopes of the ISAR and SAC for the same data set can vary substantially, revealing their non-equivalence, with implications for applications of species–area curve parameters in conservation science. For example, the ISAR was a poor predictor of archipelagic richness in datasets with a low degree of nestedness. Caution should be employed when using the ISAR for the purposes of extrapolation and prediction in habitat island systems.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1466-8238 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1559
Lien permanent pour cet enregistrement
 

 
Auteur Darling, E.S.; Graham, N.A.J.; Januchowski-Hartley, F.A.; Nash, K.L.; Pratchett, M.S.; Wilson, S.K.
Titre Relationships between structural complexity, coral traits, and reef fish assemblages Type Article scientifique
Année 2017 Publication Revue Abrégée Coral Reefs
Volume 36 Numéro 2 Pages (down) 561-575
Mots-Clés biodiversity; community; coral reef fish; diversity; ecosystems; fisheries; functional ecology; Habitat complexity; Habitat diversity; life; marine reserves; ocean acidification; Reef architecture; scleractinian corals; species traits; vulnerability
Résumé With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals-with different traits and life histories-continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0722-4028 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2150
Lien permanent pour cet enregistrement
 

 
Auteur van Gils, J.A.; van der Geest, M.; De Meulenaer, B.; Gillis, H.; Piersma, T.; Folmer, E.O.
Titre Moving on with foraging theory: incorporating movement decisions into the functional response of a gregarious shorebird Type Article scientifique
Année 2015 Publication Revue Abrégée Journal of Animal Ecology
Volume 84 Numéro Pages (down) 554-564
Mots-Clés competition continuous-time Markov chain cryptic interference diet distribution habitat choice intake rate movement ecology predation toxic prey SPATIAL-DISTRIBUTION RED KNOTS MODELING INTERFERENCE CRYPTIC INTERFERENCE STOCHASTIC VERSION BEHAVIORAL ECOLOGY MULTISTATE MODELS BANC-DARGUIN GROUP-SIZE PREY Ecology Zoology
Résumé 1. Models relating intake rate to food abundance and competitor density (generalized functional response models) can predict forager distributions and movements between patches, but we lack understanding of how distributions and small-scale movements by the foragers themselves affect intake rates. Using a state-of-the-art approach based on continuous-time Markov chain dynamics, we add realism to classic functional response models by acknowledging that the chances to encounter food and competitors are influenced by movement decisions, and, vice versa, that movement decisions are influenced by these encounters. We used a multi-state modelling framework to construct a stochastic functional response model in which foragers alternate between three behavioural states: searching, handling and moving. Using behavioural observations on a molluscivore migrant shorebird (red knot, Calidris canutus canutus), at its main wintering area (Banc d'Arguin, Mauritania), we estimated transition rates between foraging states as a function of conspecific densities and densities of the two main bivalve prey. Intake rate decreased with conspecific density. This interference effect was not due to decreased searching efficiency, but resulted from time lost to avoidance movements. Red knots showed a strong functional response to one prey (Dosinia isocardia), but a weak response to the other prey (Loripes lucinalis). This corroborates predictions from a recently developed optimal diet model that accounts for the mildly toxic effects due to consuming Loripes. Using model averaging across the most plausible multi-state models, the fully parameterized functional response model was then used to predict intake rate for an independent data set on habitat choice by red knot. Comparison of the sites selected by red knots with random sampling sites showed that the birds fed at sites with higher than average Loripes and Dosinia densities, that is sites for which we predicted higher than average intake rates. We discuss the limitations of Holling's classic functional response model which ignores movement and the limitations of contemporary movement ecological theory that ignores consumer-resource interactions. With the rapid advancement of technologies to track movements of individual foragers at fine spatial scales, the time is ripe to integrate descriptive tracking studies with stochastic movement-based functional response models.
Adresse [van Gils, Jan A.; van der Geest, Matthijs; De Meulenaer, Brecht; Gillis, Hanneke; Piersma, Theunis; Folmer, Eelke O.] NIOZ Royal Netherlands Inst Sea Res, Dept Marine Ecol, NL-1790 AB Den Burg, Texel, Netherlands. [van der Geest, Matthijs; Piersma, Theunis] Univ Groningen, Anim Ecol Grp, Ctr Ecol & Evolutionary Studies CEES, Chair Global Flyway Ecol, NL-9700 CC Groningen, Netherlands. van Gils, JA (reprint author), NIOZ Royal Netherlands Inst Sea Res, Dept Marine Ecol, POB 59, NL-1790 AB Den Burg, Texel, Netherlands. Jan.van.Gils@nioz.nl
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0021-8790 ISBN Médium
Région Expédition Conférence
Notes ISI Document Delivery No.: CB9RB Times Cited: 0 Cited Reference Count: 61 van Gils, Jan A. van der Geest, Matthijs De Meulenaer, Brecht Gillis, Hanneke Piersma, Theunis Folmer, Eelke O. NWO WOTRO [W.01.65.221.00]; NWO [R 84-639]; NWO VIDI [864.09.002] We thank Parc National du Banc d'Arguin (PNBA) for their hospitality, the hosting of our presence and the permission to work in and from the Iwik scientific station. Lemhaba ould Yarba made the logistic arrangements. Joop van Eerbeek, Erik J. Jansen, Han Olff and El-Hacen Mohamed El-Hacen helped collecting and sorting benthos samples. Valuable comments on the manuscript were given by Allert Bijleveld, Jaap van der Meer, Ola Olsson, Thomas Oudman, Isabel M. Smallegange, an anonymous referee and by the 'literature club' of the Centre for Integrative Ecology during JAvG's sabbatical at Deakin University. Dick Visser polished the figures. This work is supported by an NWO WOTRO Integrated Programme grant (W.01.65.221.00) to TP, an NWO travel grant (R 84-639) to EOF, and an NWO VIDI grant (864.09.002) to JAvG. 0 WILEY-BLACKWELL HOBOKEN J ANIM ECOL Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ 1412 collection 1383
Lien permanent pour cet enregistrement
 

 
Auteur Rey, C.; Darnaude, A.; Ferraton, F.; Guinand, B.; Bonhomme, F.; Bierne, N.; Gagnaire, P.-A.
Titre Within-Generation Polygenic Selection Shapes Fitness-Related Traits across Environments in Juvenile Sea Bream Type Article scientifique
Année 2020 Publication Revue Abrégée Genes
Volume 11 Numéro 4 Pages (down) 398
Mots-Clés antagonistic pleiotropy; fitness trade-off; habitat association; juvenile growth; polygenic scores; RAD-sequencing; spatially varying selection
Résumé Understanding the genetic underpinnings of fitness trade-offs across spatially variable environments remains a major challenge in evolutionary biology. In Mediterranean gilthead sea bream, first-year juveniles use various marine and brackish lagoon nursery habitats characterized by a trade-off between food availability and environmental disturbance. Phenotypic differences among juveniles foraging in different habitats rapidly appear after larval settlement, but the relative role of local selection and plasticity in phenotypic variation remains unclear. Here, we combine phenotypic and genetic data to address this question. We first report correlations of opposite signs between growth and condition depending on juvenile habitat type. Then, we use single nucleotide polymorphism (SNP) data obtained by Restriction Associated DNA (RAD) sequencing to search for allele frequency changes caused by a single generation of spatially varying selection between habitats. We found evidence for moderate selection operating at multiple loci showing subtle allele frequency shifts between groups of marine and brackish juveniles. We identified subsets of candidate outlier SNPs that, in interaction with habitat type, additively explain up to 3.8% of the variance in juvenile growth and 8.7% in juvenile condition; these SNPs also explained significant fraction of growth rate in an independent larval sample. Our results indicate that selective mortality across environments during early-life stages involves complex trade-offs between alternative growth strategies.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2784
Lien permanent pour cet enregistrement
 

 
Auteur Buisson, L.; Grenouillet, G.; Villeger, S.; Canal, J.; Laffaille, P.
Titre Toward a loss of functional diversity in stream fish assemblages under climate change Type Article scientifique
Année 2013 Publication Revue Abrégée Glob. Change Biol.
Volume 19 Numéro 2 Pages (down) 387-400
Mots-Clés assemblages; biotic homogenization; bird communities; climate change; distribution models; ecosystem; environmental-change; fresh-water biodiversity; functional traits; habitat; no-analog communities; range shifts; species; species distribution; stream fish; traits
Résumé The assessment of climate change impacts on biodiversity has so far been biased toward the taxonomic identification of the species likely either to benefit from climate modifications or to experience overall declines. There have still been few studies intended to correlate the characteristics of species to their sensitivity to climate change, even though it is now recognized that functional trait-based approaches are promising tools for addressing challenges related to global changes. In this study, two functional indices (originality and uniqueness) were first measured for 35 fish species occurring in French streams. They were then combined to projections of range shifts in response to climate change derived from species distribution models. We set out to investigate: (1) the relationship between the degrees of originality and uniqueness of fish species, and their projected response to future climate change; and (2) the consequences of individual responses of species for the functional diversity of fish assemblages. After accounting for phylogenetic relatedness among species, we have demonstrated that the two indices used measure two complementary facets of the position of fish species in a functional space. We have also rejected the hypothesis that the most original and/or less redundant species would necessarily experience the greatest declines in habitat suitability as a result of climate change. However, individual species range shifts could lead simultaneously both to a severe decline in the functional diversity of fish assemblages, and to an increase in the functional similarity among assemblages, supporting the hypothesis that disturbance favors communities with combination of common traits and biotic homogenization as well. Our findings therefore emphasize the importance of going beyond the simple taxonomic description of diversity to provide a better assessment of the likely future effects of environmental changes on biodiversity, thus helping to design more effective conservation and management measures.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1354-1013 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 897
Lien permanent pour cet enregistrement