bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur Torres-Irineo, E.; Dreyfus-Leon, M.; Gaertner, D.; Salas, S.; Marchal, P. doi  openurl
  Titre (up) Adaptive responses of tropical tuna purse-seiners under temporal regulations Type Article scientifique
  Année 2017 Publication Revue Abrégée Ambio  
  Volume 46 Numéro 1 Pages 88-97  
  Mots-Clés atlantic; behavior; Closed season; eastern pacific-ocean; eastern tropical pacific; Fisher behaviour; Fisheries management; fishing strategies; fleet dynamics; mixed fisheries; model; Purse-seine fishing; state; trawlers; Tropical tuna  
  Résumé The failure to achieve fisheries management objectives has been broadly discussed in international meetings. Measuring the effects of fishery regulations is difficult due to the lack of detailed information. The yellowfin tuna fishery in the eastern Pacific Ocean offers an opportunity to evaluate the fishers' responses to temporal regulations. We used data from observers on-board Mexican purse-seine fleet, which is the main fleet fishing on dolphin-associated tuna schools. In 2002, the Inter-American Tropical Tuna Commission implemented a closed season to reduce fishing effort for this fishery. For the period 1992-2008, we analysed three fishery indicators using generalized estimating equations to evaluate the fishers' response to the closure. We found that purse-seiners decreased their time spent in port, increased their fishing sets, and maintained their proportion of successful fishing sets. Our results highlight the relevance of accounting for the fisher behaviour to understand fisheries dynamics when establishing management regulations.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0044-7447 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2072  
Lien permanent pour cet enregistrement
 

 
Auteur Moullec, F.; Barrier, N.; Drira, S.; Guilhaumon, F.; Marsaleix, P.; Somot, S.; Ulses, C.; Velez, L.; Shin, Y.-J. url  doi
openurl 
  Titre (up) An End-to-End Model Reveals Losers and Winners in a Warming Mediterranean Sea Type Article scientifique
  Année 2019 Publication Revue Abrégée Front. Mar. Sci.  
  Volume 6 Numéro Pages  
  Mots-Clés Biodiversity scenario; Climate Change; Ecosytem model; End-to-end model; Fishing; Mediterraenan sea; Osmose  
  Résumé The Mediterranean Sea is now recognized as a hotspot of global change, ranking among the fastest warming ocean regions. In order to project future plausible scenarios of marine biodiversity at the scale of the whole Mediterranean basin, the current challenge is to develop an explicit representation of the multispecies spatial dynamics under the combined influence of fishing pressure and climate change. Notwithstanding the advanced state-of-the-art modelling of food webs in the region, no previous studies have projected the consequences of climate change on marine ecosystems in an integrated way, considering changes in ocean dynamics, in phyto- and zoo-plankton productions, shifts in Mediterranean species distributions and their trophic interactions at the whole basin scale. We used an integrated modelling chain including a high-resolution regional climate model, a regional biogeochemistry model and a food web model OSMOSE to project the potential effects of climate change on biomass and catches for a wide array of species in the Mediterranean Sea. We showed that projected climate change would have large consequences for marine biodiversity by the end of the 21st century under a business-as-usual scenario (RCP8.5 with current fishing mortality). The total biomass of high trophic level species (fish and macroinvertebrates) is projected to increase by 5% and 22% while total catch is projected to increase by 0.3% and 7% by 2021-2050 and 2071-2100, respectively. However, these global increases masked strong spatial and inter-species contrasts. The bulk of increase in catch and biomass would be located in the southeastern part of the basin while total catch could decrease by up to 23% in the western part. Winner species would mainly belong to the pelagic group, are thermophilic and/or exotic, of smaller size and of low trophic level while loser species are generally large-sized, some of them of great commercial interest, and could suffer from a spatial mismatch with potential prey subsequent to a contraction or shift of their geographic range. Given the already poor conditions of exploited resources, our results suggest the need for fisheries management to adapt to future changes and to incorporate climate change impacts in future management strategy evaluation.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 2296-7745 ISBN Médium  
  Région Expédition Conférence  
  Notes WOS:000472620400001 Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2587  
Lien permanent pour cet enregistrement
 

 
Auteur Neira, S.; Moloney, C.; Christensen, V.; Cury, P.; Shannon, L.; Arancibia, H. url  doi
openurl 
  Titre (up) Analysing changes in the southern Humboldt ecosystem for the period 1970-2004 by means of dynamic food web modelling Type Article scientifique
  Année 2014 Publication Revue Abrégée Ecological Modelling  
  Volume 274 Numéro Pages 41-49  
  Mots-Clés Ecopath with Ecosim; Fishing patterns; Physical forcing; Regime shifts; Southern Humboldt; Trophic controls  
  Résumé A 22-group Ecopath model representing the southern Humboldt (SH) upwelling system in the year 1970 is constructed. The model is projected forward in time and fitted to available time series of relative biomass, catch and fishing mortality for the main fishery resources. The time series cover the period 1970 to 2004 and the fitting is conducted using the Ecopath with Ecosim (EwE) software version 5.1. The aim is to explore the relative importance of internal (trophic control) and external (fishing, physical variability) forcing on the dynamics of commercial stocks and the Southern Chilean food web. Wide decadal oscillations are observed in the biomass of commercial stocks during the analyzed period. Fishing mortality explains 21% of the variability in the time series, whereas vulnerability (v) parameters estimated using EwE explain an additional 20%. When a function affecting primary production (PP) is calculated by Ecosim to minimize the sum of squares of the time series, a further 28% of variability is explained. The best fit is obtained by using the fishing mortality time series and by searching for the best combination of v parameters and the PP function simultaneously, accounting for 69% of total variability in the time series. The PP function obtained from the best fit significantly correlates with independent time series of an upwelling index (UI; rho = 0.47, p<0.05) and sea surface temperature (SST; rho = -0.45, p<0.05), representing environmental conditions in the study area during the same period of time. These results suggest that the SH ecosystem experienced at least two different environmentally distinct periods in the last three decades: (i) from 1970 to 1985 a relatively warm period with low levels of upwelling and PP, and (ii) from 1985 to 2004 a relatively cold period with increased upwelling and PP. This environmental variability can explain some of the changes in the food webs. Fishing (catch rate) and the environment (bottom-up anomaly in PP) appear to have affected the SH both at the stock and at the food web level between 1970 and 2004. The vulnerability setting indicates that the effects of external forcing factors may have been mediated by trophic controls operating in the food web.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0304-3800 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel LL @ pixluser @ collection 330  
Lien permanent pour cet enregistrement
 

 
Auteur Travers, M.; Watermeyer, K.; Shannon, L.J.; Shin, Y.-J. url  doi
openurl 
  Titre (up) Changes in food web structure under scenarios of overfishing in the southern Benguela : comparison of the Ecosim and OSMOSE modelling approaches Type Article scientifique
  Année 2010 Publication Revue Abrégée Journal of Marine Systems  
  Volume 79 Numéro Pages 101-111  
  Mots-Clés and; Benguela; ecosystem; Fishing; Food; function; indicators; model; structure; Trophic; upwelling; web  
  Résumé Ecosystem models provide a platform allowing exploration into the possible responses of marine food webs to fishing pressure and various potential management decisions. In this study we investigate the particular effects of overfishing on the structure and function of the southern Benguela food web, using two models with different underlying assumptions: the spatialized, size-based individual-based model, OSMOSE, and the trophic mass-balance model, Ecopath with Ecosim (EwE). Starting from the same reference state of the southern Benguela upwelling ecosystem during the 1990s, we compare the response of the food web to scenarios of overfishing using these two modelling approaches. A scenario of increased fishing mortality is applied to two distinct functional groups: i) two species of Cape hake, representing important target predatory fish, and ii) the forage species anchovy, sardine and redeye. In these simulations, fishing mortality on the selected functional groups is doubled for 10 years, followed by 10 years at the initial fishing mortality. We compare the food web states before the increase of fishing mortality, after 10 years of overfishing and after a further 10 years during which fishing was returned to initial levels. In order to compare the simulated food web structures with the reference state, and between the two modelling approaches, we use a set of trophic indicators: the mean trophic level of the community and in catches, the trophic pyramid (biomass per discrete trophic level), and the predatory/forage fish biomass ratio. OSMOSE and EwE present globally similar results for the trophic functioning of the ecosystem under fishing pressure: the biomass of targeted species decreases whereas that of their potential competitors increases. The reaction of distant species is more diverse, depending on the feeding links between the compartments. The mean trophic level of the community does not vary enough to be used for assessing ecosystem impacts of fishing, and the mean trophic level in the catch displays a surprising increase due to the short period of overfishing. The trophic pyramids behave in an unexpected way compared to trophic control theory. because at least two food chains with different dynamics are intertwined within the food web. We emphasize the importance of biomass information at the species level for interpreting dynamics in aggregated indicators, and we highlight the importance of competitive groups when looking at ecosystem functioning under fishing disturbance. Finally, we discuss the results within the scope of differences between models, in terms of the way they are formulated, spatial dimensions, predation formulations and the representation of fish life cycles.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0924-7963 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel LL @ pixluser @ collection 111  
Lien permanent pour cet enregistrement
 

 
Auteur Ndiaye, W.; Thiaw, M.; Diouf, K.; Ndiaye, P.; Thiaw, O.T.; Panfili, J. url  doi
openurl 
  Titre (up) Changes in population structure of the white grouper Epinephelus aeneus as a result of long-term overexploitation in Senegalese waters Type Article scientifique
  Année 2013 Publication Revue Abrégée African Journal of Marine Science  
  Volume 35 Numéro 4 Pages 465-472  
  Mots-Clés West Africa; africa; biological indicators; communities; diversity; evaluate; fishing pressure; hermaphroditism; indicators; length at maturity; management; reef fishes; serranidae; size; size spectra; spectrum  
  Résumé In Senegal, a significant decrease in catches indicates that many demersal fish stocks are being overexploited. The white grouper Epinephelus aeneus, locally known as the 'thiof', is exploited by both small-scale and industrial fisheries. A 28-year database of E. aeneus catches along the Senegalese coast provided by the Centre for Oceanographic Research of Dakar-Thiaroye, and size at maturity measured in Dakar (Senegal) from monthly samples in 2010, were used to analyse changes in population structure in the area over the past 37 years. Catches from the northern fishing areas were lower than those from the southern fishing areas, and decreased steadily during the period (Kolmogorov-Smirnov test, D = 0.243, p = 0.0002). The individual mean weight of catches decreased from 1974 to 2010 (linear regression, r(2) = 0.40, n = 37) and only 60% of the individuals were mature. The calculated sizes at maturity were 49 cm total length (TL) for females and 55 cm for males, and the optimal length of capture for a sustainable fishery was 96 cm, but only 0.03% of E. aeneus caught reached this length. Most of the catch consisted of juveniles; the larger reproductive individuals had disappeared. The number of individuals caught decreased significantly between 1974 and 2010 (1974-1983, r(2) = 0.98, n = 74 674; 1984-1993, r(2) = 0.95, n = 96 696; 1994-2003, r(2) = 0.93, n = 12 619; 2004-2010, r(2) = 0.91, n = 12 887), whereas the length range remained the same (10-110 cm TL). Biological indicators clearly showed that E. aeneus stocks in Senegal are overexploited and the species is now endangered. Immediate active management of fishing pressure is needed, therefore, to maintain E. aeneus populations in the area. Our results suggest a minimum size of <50 cm should be introduced and that fishing effort should be reduced.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1814-232x ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 484  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: