bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur (up) de Verdal, H.; Mekkawy, W.; Lind, C.E.; Vandeputte, M.; Chatain, B.; Benzie, J.A.H. doi  openurl
  Titre Measuring individual feed efficiency and its correlations with performance traits in Nile tilapia, Oreochromis niloticus Type Article scientifique
  Année 2017 Publication Revue Abrégée Aquaculture  
  Volume 468 Numéro Pages 489-495  
  Mots-Clés bream sparus-aurata; compensatory growth; conversion efficiency; diet environments; Feed conversion ratio; Feed efficiency; Feed intake; fish-meal; food; genetic-improvement; growth; Nile tilapia; rainbow-trout; Repeatability; salmon salmo-salar; selection; Sex  
  Résumé Estimating individual feed intake of fish held in groups has long been a challenge precluding precise knowledge of the individual variation of feed efficiency (FE) in fish. In this study, counts of the number of feed pellets (1.63 mg on average) eaten by individual tilapia (Oreochromis niloticus) held in 8 mixed sex groups of 15 fish were measured from video recordings made over a period of 10 days where fish were fed twice daily to achieve compensatory growth after 10 days of fasting. The initial body weight of the fish was 9.77 +/- 2.03 g. Accumulated measures of feed intake (FI) over 11 meals were found to achieve 95% repeatability and a high accuracy of estimation of FI. During the FI measurement period, the average fish growth was 12.0 +/- 3.6 g, feed intake was 0.99 g day (-1), and feed conversion ratio (FCR) was 0.86 +/- 0.20. FI differences accounted for 56% of the observed individual growth variations, and 44% was related to individual variations of FE. On average males grew 24.2% faster than females but consumed 12.1% more feed. Males showed an 11.7% better FCR than females, whereas residual feed intake (RFI) differences were not significant between sexes. FCR and RFI were moderately and significantly correlated (0.58 +/- 0.06) but FCR and FI, and body weight gain (BWG) and RFI, were not, highlighting the complex relationships between feed efficiency traits. The approach described here demonstrates a means to accurately investigate FE traits in fish and to assess the potential for their genetic improvement. Statement of relevance: Feed efficiency has strong economic and environmental impact. (C) 2016 Elsevier B.V. All rights reserved.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0044-8486 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 1713  
Lien permanent pour cet enregistrement
 

 
Auteur (up) Killen, S.S.; Marras, S.; McKenzie, D.J. url  doi
openurl 
  Titre Fast growers sprint slower: effects of food deprivation and re-feeding on sprint swimming performance in individual juvenile European sea bass Type Article scientifique
  Année 2014 Publication Revue Abrégée Journal of Experimental Biology  
  Volume 217 Numéro 6 Pages 859-865  
  Mots-Clés Compensatory growth; Ecophysiology; Food deprivation; Foraging; Locomotion; atlantic; catch-up growth; cod; dicentrarchus-labrax; ecological performance; gadus-morhua; long-term starvation; metabolic responses; salmon; teleost fish; trade-off; trade-offs; trout oncorhynchus-mykiss  
  Résumé While many ectothermic species can withstand prolonged fasting without mortality, food deprivation may have sublethal effects of ecological importance, including reductions in locomotor ability. Little is known about how such changes in performance in individual animals are related to either mass loss during food deprivation or growth rate during re-feeding. This study followed changes in the maximum sprint swimming performance of individual European sea bass, Dicentrarchus labrax, throughout 45 days of food deprivation and 30 days of re-feeding. Maximum sprint speed did not show a significant decline until 45 days of food deprivation. Among individuals, the reduction in sprinting speed at this time was not related to mass loss. After 30 days of re-feeding, mean sprinting speed had recovered to match that of control fish. Among individuals, however, maximum sprinting speed was negatively correlated with growth rate after the resumption of feeding. This suggests that the rapid compensatory growth that occurs during re-feeding after a prolonged fast carries a physiological cost in terms of reduced sprinting capacity, the extent of which shows continuous variation among individuals in relation to growth rate. The long-term repeatability of maximum sprint speed was low when fish were fasted or fed a maintenance ration, but was high among control fish fed to satiation. Fish that had been previously food deprived continued to show low repeatability in sprinting ability even after the initiation of ad libitum feeding, probably stemming from variation in compensatory growth among individuals and its associated negative effects on sprinting ability. Together, these results suggest that food limitation can disrupt hierarchies of maximum sprint performance within populations. In the wild, the cumulative effects on locomotor capacity of fasting and re-feeding could lead to variable survival among individuals with different growth trajectories following a period of food deprivation.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0022-0949 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 601  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: