|   | 
Détails
   web
Enregistrements
Auteur Ben Othman, H.; Lanouguère, É.; Got, P.; Sakka Hlaili, A.; Leboulanger, C.
Titre Structural and functional responses of coastal marine phytoplankton communities to PAH mixtures Type Article scientifique
Année 2018 Publication Revue Abrégée Chemosphere
Volume 209 Numéro Pages 908-919
Mots-Clés Ecotoxicity; Mediterranean coastal lagoons; PAH mixtures (PAHs); Phytoplankton communities
Résumé The toxicity of polycyclic aromatic hydrocarbons (PAHs) mixtures was evaluated on natural phytoplankton communities sampled from lagoons of Bizerte (South-western Mediterranean Sea) and Thau (North-western Mediterranean Sea). PAHs induced short-term dose and ecosystem-dependant decreases in photosynthetic potential. Chlorophyll a was negatively affected by increasing PAHs concentrations, together with dramatic changes in phytoplankton community composition. Size classes were strongly affected in the Bizerte compare to the Thau lagoon, with a decrease in nano- and microphytoplankton densities compare to picophytoplankton. In both locations, the diatom Entomoneis paludosa appeared favoured under PAH exposure as evidenced by increase in cell density, whereas autotrophic flagellates and dinophytes were strongly reduced. Smaller cells were more tolerant to exposure to highest PAHs concentrations, with persistent picophytoplankton carbon biomass at the end of the incubations. Apparent recovery of photosynthetic potential, accompanied with a regrowth of chlorophyll a under the lowest PAH doses, coincided with a significantly altered community composition in both lagoons. Furthermore, sensitivity to PAHs was not related to the phytoplankton cell size, and toxicity-induced modification of top-down control by grazers during the experiment cannot be excluded.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0045-6535 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2403
Lien permanent pour cet enregistrement
 

 
Auteur De Wit, R.; Chaubron-Couturier, P.; Galletti, F.
Titre Diversity of property regimes of Mediterranean coastal lagoons in S. France; implications for coastal zone management Type Article scientifique
Année 2021 Publication Revue Abrégée Ocean & Coastal Management
Volume 207 Numéro Pages 105579
Mots-Clés Coastal lagoons; Coastal law; Commons; Governance; Marine protected areas; Maritime public domain; Nature conservation; Property regimes
Résumé We provide a cartography of the current property regimes of permanent coastal lagoons along the coastlines of the Mediterranean Sea for continental France and Corsica, which include both private and public properties. In France, for the latter, the State Domain Code and the General Code of the property of public persons make a clear difference between Public Domain and private property of the different public entities. Public domain represents property that is imprescriptible and inalienable, i.e. the property rights cannot be changed in the future and neither transferred nor sold to somebody else. In contrast, private properties of public entities can be sold or transferred to thirds. Maritime Public Domain (DPM) was created since 1681. DPM has accommodated Public Domain for the French coastal lagoons following their legal definition as “salty ponds (French étangs salés) with a direct, natural and permanent connection with the sea”. However, private landlords battled juridically with the State for centuries both by attacking the pertinence of this definition and claiming ancestral property rights. As a result, before 1980, more than half of the coastal lagoons comprised private properties, representing about a quarter of the lagoon surface. Twelve of 40 coastal lagoons comprise DPM, mainly the larger lagoons (e.g., Salses-Leucate, many lagoons close to Narbonne, Thau lagoon, Berre lagoon), representing 65% of the total lagoon surface. Since its foundation in 1975, the Conservatoire du Littoral, a public body in charge of coastal nature protection, has bought private coastal lagoons properties in twenty of 40 lagoons, representing 22% of the total lagoon surface. These have been designated as inalienable and imprescriptible “Public Domain of the Conservatoire”, safeguarded for nature conservation purposes. Nowadays, private ownership still persists in 13 lagoons representing 3.3% of total surface. The Coastal lagoons in Roussillon (Etangs du Canet and Salses-Leucate), the Hérault department, in the Camargue and in Corsica currently show variable and sometimes fragmented ownership (in addition to the Conservatoire, DPM, private ownership, municipalities, departments). Fragmented ownership is a clear difficulty for the integrated management of coastal lagoons. With currently, 87% of the coastal lagoons as Public Domain, public law and the environmental code have to evolve to tackle the challenges for the conservation and management of coastal lagoons and their connectivity with the other ecosystems on land and in the sea.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0964-5691 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2973
Lien permanent pour cet enregistrement
 

 
Auteur Derolez, V.; Bec, B.; Munaron, D.; Fiandrino, A.; Pete, R.; Simier, M.; Souchu, P.; Laugier, T.; Aliaume, C.; Malet, N.
Titre Recovery trajectories following the reduction of urban nutrient inputs along the eutrophication gradient in French Mediterranean lagoons Type Article scientifique
Année 2019 Publication Revue Abrégée Ocean & Coastal Management
Volume 171 Numéro Pages 1-10
Mots-Clés Coastal lagoons; Nutrients; Oligotrophication; Recovery; Urban inputs
Résumé French Mediterranean coastal lagoons have been subject to huge inputs of urban nutrients for decades leading to the eutrophication of these vulnerable ecosystems. In response to new environmental regulations, some of the lagoons have recently been the subject of large-scale management actions targeting the waste water treatment systems located on their watersheds. While the eutrophication of coastal ecosystems is well described, recovery trajectories have only recently been studied. To assess the rapidity and the extent of the effect of the remediation actions, we analysed data from a 14-year time series resulting from the monitoring of nutrients, biomass and the abundance of phytoplankton in the water column of French Mediterranean coastal lagoons covering the whole anthropogenic eutrophication gradient. Following a 50% to 80% reduction in total phosphorus (TP) and total nitrogen (TN) urban loadings from the watershed of hypertrophic and eutrophic ecosystems, the integrative parameters chlorophyll a, TN and TP, provide evidence for a rapid response (1 to 3 years) and for an almost complete recovery, suggesting no hysteresis for the eutrophic lagoon. However, our findings also show that recovery patterns depend on the eutrophication status before remediation and may include feedback responses. The different responses revealed by our results should help stakeholders prioritise remediation actions and identify appropriate restoration goals, especially in light of the targets of the Water Framework Directive (WFD).
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0964-5691 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2493
Lien permanent pour cet enregistrement
 

 
Auteur Draredja, M.A.; Frihi, H.; Boualleg, C.; Gofart, A.; Abadie, E.; Laabir, M.
Titre Seasonal variations of phytoplankton community in relation to environmental factors in a protected meso-oligotrophic southern Mediterranean marine ecosystem (Mellah lagoon, Algeria) with an emphasis of HAB species Type Article scientifique
Année 2019 Publication Revue Abrégée Environ. Monit. Assess.
Volume 191 Numéro 10 Pages 603
Mots-Clés coastal lagoons; Diversity; dynamics; Environmental conditions; HAB species; Mediterranean lagoon; nutrients; particulate matter; patterns; Phytoplankton monitoring; sea; temporal variations; thau lagoon; venice lagoon; water-quality
Résumé The spatial and temporal variation of phytoplankton communities including HAB species in relation to the environmental characteristics was investigated in the protected meso-oligotrophic Mellah lagoon located in the South Western Mediterranean. During 2016, a biweekly monitoring of phytoplankton assemblages and the main abiotic factors were realized at three representative stations. Taxonomic composition, abundance, and diversity index were determined. In total, 227 phytoplankton species (160 diatoms and 53 dinoflagellates) were inventoried. There was a clear dominance of diatoms (62.9%) compared with dinoflagellates (36.8%). Diatoms dominated in spring and dinoflagellates developed in summer and early autumn in Mellah showing a marked seasonal trend. Data showed that the dynamic of the phytoplankton taxa evolving in the lagoon was mainly driven by temperature and salinity. For the first time, a number of potentially toxic species have been identified, including 2 diatoms (Pseudo-nitzschia group delicatissima, Pseudo-nitzschia group seriata) and 5 dinoflagellates (Alexandrium minutum, Alexandrium tamarense/catenella, Dinophysis acuminata, Dinophysis sacculus, Prorocentrum lima). These harmful species could threat the functioning of the Mellah lagoon and human health and require the establishment of a monitoring network. Finally, our study suggests that the observed decrease of the phytoplankton diversity between 2001 and 2016 could result from the reduction in water exchanges between the lagoon and the adjacent coast following the gradual clogging of the channel.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0167-6369 ISBN Médium
Région Expédition Conférence
Notes WOS:000484493700001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2635
Lien permanent pour cet enregistrement
 

 
Auteur Fiandrino, A.; Ouisse, V.; Dumas, F.; Lagarde, F.; Pete, R.; Malet, N.; Le Noc, S.; de Wit, R.
Titre Spatial patterns in coastal lagoons related to the hydrodynamics of seawater intrusion Type Article scientifique
Année 2017 Publication Revue Abrégée Mar. Pollut. Bull.
Volume 119 Numéro 1 Pages 132-144
Mots-Clés bay; confinement; estuary; Hydromorphological zonations; Mediterranean coastal lagoons; Mixing efficiency; model performance; Numerical model; sparus-aurata; Transport timescale; transport time scales; ulva rigida; venice lagoon; Water renewal; water renewal timescales; wind-driven circulation
Résumé Marine intrusion was simulated in a choked and in a restricted coastal lagoon by using a 3D-hydrodynamic model. To study the spatiotemporal progression of seawater intrusion and its mixing efficiency with lagoon waters we define Marine Mixed Volume (V-MM) as a new hydrodynamic indicator. Spatial patterns in both lagoons were described by studying the time series and maps of VMM taking into account the meteorological conditions encountered during a water year. The patterns comprised well-mixed zones (WMZ) and physical barrier zones (PBZ) that act as hydrodynamic boundaries. The choked Bages-Sigean lagoon comprises four sub-basins: a PBZ at the inlet, and two WMZ's separated by another PBZ corresponding to a constriction zone. The volumes of the PBZ were 2.1 and 5.4 millions m(3) with characteristic mixing timescale of 68 and 84 days, respectively. The WMZ were 123 and 433 millions m(3) with characteristics mixing timescale of 70 and 39 days, respectively. (C) 2017 Elsevier Ltd. All rights reserved.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0025-326x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2181
Lien permanent pour cet enregistrement